1. bookVolume 1 (2017): Issue 3 (July 2017)
Journal Details
License
Format
Journal
eISSN
2564-615X
First Published
30 Jan 2017
Publication timeframe
4 times per year
Languages
English
access type Open Access

Formal- and high-structured kinetic process modelling and footprint area analysis of binary imaged cells: Tools to understand and optimize multistage-continuous PHA biosynthesis

Published Online: 20 Jul 2017
Volume & Issue: Volume 1 (2017) - Issue 3 (July 2017)
Page range: 203 - 211
Journal Details
License
Format
Journal
eISSN
2564-615X
First Published
30 Jan 2017
Publication timeframe
4 times per year
Languages
English
Abstract

Competitive polyhydroxyalkanoate (PHAs) production requires progress in microbial strain performance, feedstock selection, downstream processing, and more importantly according to the process design with process kinetics of the microbial growth phase and the phase of product formation. The multistage continuous production in a bioreactor cascade was described for the first time in a continuously operated, flexible five-stage bioreactor cascade that mimics the characteristics involved in the engineering process of tubular plug flow reactors. This process was developed and used for Cupriavidus necator-mediated PHA production at high volumetric and specific PHA productivity (up to 2.31 g/(Lh) and 0.105 g/(gh), respectively). Based on the experimental data, formal kinetic and high structured kinetic models were established, accompanied by footprint area analysis of binary imaged cells. As a result of the study, there has been an enhanced understanding of the long-term continuous PHA production under balanced, transient, and nutrient-deficient conditions that was achieved on both the micro and the macro kinetic level. It can also be concluded that there were novel insights into the complex metabolic occurrences that developed during the multistage- continuous production of PHA as a secondary metabolite. This development was essential in paving the way for further process improvement. At the same time, a new method of specific growth rate and specific production rate based on footprint area analysis was established by using the electron microscope.

1. Khosravi-Darani K., Bucci DZ. Application of poly(hydroxyalkanoate) in food packaging: Improvements by nanotechnology. Chem Biochem Eng Q 2015; 29(2): 275-285.10.15255/CABEQ.2014.2260Search in Google Scholar

2. Nigmatullin R, Thomas P, Lukasiewicz B, Puthussery H, Roy I. Polyhydroxyalkanoates, a family of natural polymers, and their applications in drug delivery. J Chem Technol Biotechnol 2015; 90(7): 1209-1221. 10.1002/jctb.4685Search in Google Scholar

3. Koller M. Poly(hydroxyalkanoates) for food packaging: Application and attempts towards implementation. Appl Food Biotechnol 2014; 1(1): 3-15.Search in Google Scholar

4. Ong SY, Sudesh K. Effects of polyhydroxyalkanoate degradation on soil microbial community. Polym Degrad Stab 2016; 131: 9-19.10.1016/j.polymdegradstab.2016.06.024Search in Google Scholar

5. Berezina N, Yada B, Lefebvre R. From organic pollutants to bioplastics: insights into the bioremediation of aromatic compounds by Cupriavidus necator. New Biotechnol 2015; 32(1): 47-53.10.1016/j.nbt.2014.09.003Search in Google Scholar

6. Jendrossek D, Pfeiffer D. New insights in the formation of polyhydroxyalkanoate granules (carbonosomes) and novel functions of poly(3‐hydroxybutyrate). Environ Microbiol 2014; 16(8): 2357-2373.10.1111/1462-2920.12356Search in Google Scholar

7. Masood F, Yasin T, Hameed A. Polyhydroxyalkanoates-what are the uses? Current challenges and perspectives. Crit Rev Biotechnol 2015; 35(4): 514-521.10.3109/07388551.2014.913548Search in Google Scholar

8. Obruca S, Sedlacek P, Mravec F, Samek O, Marova, I. Evaluation of 3-hydroxybutyrate as an enzyme-protective agent against heating and oxidative damage and its potential role in stress response of poly(3-hydroxybutyrate) accumulating cells. Appl Microbiol Biotechnol 2016; 100(3): 1365-1376.10.1007/s00253-015-7162-4Search in Google Scholar

9. Reddy CSK, Ghai R, Kalia V. Polyhydroxyalkanoates: an overview. Biores Technol 2003; 87(2): 137-146.10.1016/S0960-8524(02)00212-2Search in Google Scholar

10. Steinbuchel A. Perspectives for biotechnological production and utilization of biopolymers: metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example. Macromol Biosci 2001; 1(1): 1-24.10.1002/1616-5195(200101)1:1<1::AID-MABI1>3.0.CO;2-BSearch in Google Scholar

11. Keshavarz T, Roy I. Polyhydroxyalkanoates: bioplastics with a green agenda. Curr Opin Microbiol 2010; 13(3): 321-326.10.1016/j.mib.2010.02.006Open DOISearch in Google Scholar

12. Chen GQ, Hajnal I. The ‘PHAome’. Trends Biotechnol 2015; 33(10): 559-564.Search in Google Scholar

13. Koller M, Maršalek L, Miranda de Sousa Dias M, Braunegg G. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnol 2017; 37(A): 24-38.10.1016/j.nbt.2016.05.001Open DOISearch in Google Scholar

14. Narodoslawsky M, Shazad K, Kollmann R, Schnitzer H. LCA of PHA Production-Identifying the Ecological Potential of Bio-plastic. Chem Biochem Eng Q 2015; 29(2): 299-305.10.15255/CABEQ.2014.2262Search in Google Scholar

15. Novak M, Koller M, Braunegg M, Horvat P. Mathematical modelling as a tool for optimized PHA production. Chem Biochem Eng Q 2015; 29(2): 183-220.10.15255/CABEQ.2014.2101Search in Google Scholar

16. Kaur G, Roy I. Strategies for large-scale production of polyhydroxyalkanoates. Chem Biochem Eng Q 2015; 29(2): 157-172. 10.15255/CABEQ.2014.2255Search in Google Scholar

17. Haas C, El-Najjar T, Virgolini N, Smerilli M, Neureiter M. High cell-density production of poly (3-hydroxybutyrate) in a membrane bioreactor. New Biotechnol 2017; 37(A): 117-122.10.1016/j.nbt.2016.06.1461Search in Google Scholar

18. Luo HP, Kemoun A, Al-Dahhan MH, Sevilla JF, Sanchez JG, Camacho FG, Grima EM. Analysis of photobioreactors for culturing high-value microalgae and cyanobacteria via an advanced diagnostic technique: CARPT. Chem Eng Sci 2003; 58(12): 2519-2527.10.1016/S0009-2509(03)00098-8Search in Google Scholar

19. Dionisi D, Majone M, Vallini G, Di Gregorio S, Beccari M. Effect of the applied organic load rate on biodegradable polymer production by mixed microbial cultures in a sequencing batch reactor. Biotechnol Bioeng 2006; 93(1): 76-88.10.1002/bit.2068316224790Search in Google Scholar

20. Koller M, Muhr A. Continuous production mode as a viable process- engineering tool for efficient poly(hydroxyalkanoate) (PHA) bio-production. Chem Biochem Eng Q 2014; 28(1): 65-77.Search in Google Scholar

21. Koller M, Braunegg G. Potential and prospects of continuous polyhydroxyalkanoate (PHA) production. Bioengineering 2015; 2(2): 94-121.10.3390/bioengineering2020094559719528955015Search in Google Scholar

22. Braunegg G, Lefebvre G, Renner G, Zeiser A, Haage G, Loidl-Lanthaler K. Kinetics as a tool for polyhydroxyalkanoate production optimization. Can J Microbiol 1995: 41(13): 239-248.10.1139/m95-192Search in Google Scholar

23. Moser A (1988) Bioprocess technology: kinetics and reactors. Springer, New York10.1007/978-1-4613-8748-0Search in Google Scholar

24. Atlić A, Koller M, Scherzer D, Kutschera C, Grillo-Fernandes E, Horvat P, Chiellini E, Braunegg G. Continuous production of poly([R]-3-hydroxybutyrate) by Cupriavidus necator in a multistage bioreactor cascade. Appl Microbiol Biotechnol 2001; 91(2): 295-304.10.1007/s00253-011-3260-0Search in Google Scholar

25. Patnaik PR. Perspectives in the Modeling and Optimization of PHB Production by Pure and Mixed Cultures. Cit Rev Biotechnol 2005: 25(3); 153-171. 10.1080/07388550500301438Open DOISearch in Google Scholar

26. Koller M, Horvat P, Hesse P, Bona R, Kutschera C, Atlić A., Braunegg G. Assessment of formal and low structured kinetic modeling of polyhydroxyalkanoate synthesis from complex substrates. Bioproc Biosyst Eng 2006; 29(5-6): 367-377.10.1007/s00449-006-0084-xOpen DOISearch in Google Scholar

27. Špoljarić IV, Lopar M, Koller M, Muhr A, Salerno A, Reiterer A, Malli K, Angerer H, Strohmeier K, Schober S, Mittelbach M. Mathematical modeling of poly[(R)-3-hydroxyalkanoate] synthesis by Cupriavidus necator DSM 545 on substrates stemming from biodiesel production. Biores Technol 2013; 133: 482-494.10.1016/j.biortech.2013.01.126Search in Google Scholar

28. Vadlja D, Koller M, Novak M, Braunegg G, Horvat P. Footprint area analysis of binary imaged Cupriavidus necator cells to study PHB production at balanced, transient, and limited growth conditions in a cascade process. Appl Microbiol Biotechnol 2016; 100(23): 10065-10080.10.1007/s00253-016-7844-6Open DOISearch in Google Scholar

29. Horvat P, Špoljarić IV, Lopar M, Atlić A, Koller M, Braunegg G. Mathematical modelling and process optimization of a continuous 5-stage bioreactor cascade for production of poly[-(R)-3-hydroxybutyrate] by Cupriavidus necator. Bioproc. Biosyst. Eng. 2013; 36(9): 1235-1250.Search in Google Scholar

30. Luedeking R, Piret EL. A kinetic study of the lactic acid fermentation. Batch process at controlled pH. J Biochem Microbiol Technol Eng 1959; 1(4): 393-412.10.1002/jbmte.390010406Search in Google Scholar

31. Megee III, RD, Drake JF, Fredrickson AG, Tsuchiya HM. Studies in intermicrobial symbiosis. Saccharomyces cerevisiae and Lactobacillus casei. Can J Microbiol 1972; 18(11): 1733-1742.10.1139/m72-269Search in Google Scholar

32. Mankad T, Nauman EB. Modeling of microbial growth under dual limitations. The Chem Eng J 1992; 48(2): B9-B11.10.1016/0300-9467(92)85016-3Open DOISearch in Google Scholar

33. Špoljarić IV, Lopar M, Koller M, Muhr A, Salerno A, Reiterer A, Horvat P. In silico optimization and low structured kinetic model of poly[(R)-3-hydroxybutyrate] synthesis by Cupriavidus necator DSM 545 by fed-batch cultivation on glycerol. J Biotechnol 2013; 168(4): 625-635.10.1016/j.jbiotec.2013.08.01924001933Search in Google Scholar

34. Lopar M, Špoljarić IV, Atlić A, Koller M, Braunegg G, Horvat P. Fivestep continuous production of PHB analyzed by elementary flux modes, yield space analysis and high structured metabolic model. Biochem Eng J 2013; 79, 57-70.10.1016/j.bej.2013.07.003Open DOISearch in Google Scholar

35. Lopar M, Špoljarić IV, Cepanec N, Koller M, Braunegg G, Horvat P. Study of metabolic network of Cupriavidus necator DSM 545 growing on glycerol by applying elementary flux modes and yield space analysis. J Ind Microbiol Biotechnol 2014; 41(6): 913-930.10.1007/s10295-014-1439-y24715530Open DOISearch in Google Scholar

36. Krzyzanek V, Hrubanova K, Samek O, Obruca S, Marova I, Bernatova S, Siler M, Zemanek P. Cryo-SEM and Raman Spectroscopy study of the involvement of polyhydroxyalkanoates in stress response of bacteria. Microsc Microan 2015; 21(S3): 183-184.10.1017/S1431927615001713Search in Google Scholar

37. Mravec F, Obruca S, Krzyzanek V, Sedlacek P, Hrubanova K, Samek O, Kucera D, Benesova P, Nebesarova J. Accumulation of PHA granules in Cupriavidus necator as seen by confocal fluorescence microscopy. FEMS Microbiol Lett 2016; 363(10), fnw094.10.1093/femsle/fnw09427190240Search in Google Scholar

38. Wang Y, Yin J, Chen GQ. Polyhydroxyalkanoates, challenges and opportunities. Curr Opin Biotechnol 2014; 30: 59-65.10.1016/j.copbio.2014.06.00124976377Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo