1. bookVolume 1 (2017): Issue 1 (January 2017)
Journal Details
License
Format
Journal
eISSN
2564-615X
First Published
30 Jan 2017
Publication timeframe
4 times per year
Languages
English
access type Open Access

Antibiotic resistance in lactococci and enterococci: phenotypic and molecular-genetic aspects

Published Online: 27 Jan 2017
Volume & Issue: Volume 1 (2017) - Issue 1 (January 2017)
Page range: 10 - 17
Received: 27 Jan 2017
Journal Details
License
Format
Journal
eISSN
2564-615X
First Published
30 Jan 2017
Publication timeframe
4 times per year
Languages
English
Abstract

Extensive use of antibiotics in medicine, veterinary practice and animal husbandry has promoted the development and dissemination of bacterial drug resistance. The number of resistant pathogens causing common infectious diseases increases rapidly and creates worldwide public health problem. Commensal bacteria, including lactic acid bacteria of genera Enterococcus and Lactococcus colonizing gastrointestinal and urogenital tracts of humans and animals may act as vehicles of antibiotic resistance genes similar to those found in pathogens. Lactococci and enterococci are widely used in manufacturing of fermented products and as probiotics, therefore monitoring and control of transmissible antibiotic resistance determinants in industrial strains of these microorganisms is necessary to approve their Qualified Presumption of Safety status. Understanding the nature and molecular mechanisms of antibiotic resistance in enterococci and lactococci is essential, as intrinsic resistant bacteria pose no threat to environment and human health in contrast to bacteria with resistance acquired through horizontal transfer of resistance genes. The review summarizes current knowledge concerning intrinsic and acquired antibiotic resistance in Lactococcus and Enterococcus genera, and discusses role of enterococci and lactococci in distribution of this feature.

1. Dunny GM, Leonard BA, Hedberg PJ. Pheromone-inducible conjugation in Enterococcus faecalis: interbacterial and host-parasite chemical communication. J Bacteriol 1995; 177(4): 871-6.10.1128/jb.177.4.871-876.19951766777860595Search in Google Scholar

2. Spellberg B, Guidos R, Gilbert D, Bradley J, Boucher HW, Scheld WM, et al. The Epidemic of Antibiotic-Resistant Infections: A Call to Action for the Medical Community from the Infectious Diseases Society of America. Clin Infect Dis.2008; 46(2): 155-64.10.1086/52489118171244Open DOISearch in Google Scholar

3. Grohmann E, Muth G, Espinosa M. Conjugative plasmid transfer in gram-positive bacteria. Microbiol Mol Biol Rev MMBR 2003; 67(2): 277-301.10.1128/MMBR.67.2.277-301.200315646912794193Search in Google Scholar

4. Nikaido H. Multidrug Resistance in Bacteria. Annu Rev Biochem 2009; 78(1): 119-46.10.1146/annurev.biochem.78.082907.145923283988819231985Search in Google Scholar

5. Putman M, van Veen HW, Konings WN. Molecular properties of bacterial multidrug transporters. Microbiol Mol Biol Rev MMBR 2000; 64(4): 672-93.10.1128/MMBR.64.4.672-693.20009900911104814Open DOISearch in Google Scholar

6. Rao GG. Risk factors for the spread of antibiotic-resistant bacteria. Drugs 1998; 55(3): 323-30.10.2165/00003495-199855030-000019530540Open DOISearch in Google Scholar

7. Schjorring S, Krogfelt KA, Schjorring S, Krogfelt KA. Assessment of Bacterial Antibiotic Resistance Transfer in the Gut, Assessment of Bacterial Antibiotic Resistance Transfer in the Gut. Int J Microbiol Int J Microbiol 2011; 2011:e312956.10.1155/2011/312956303494521318188Search in Google Scholar

8. Ammor MS, Mayo B. Selection criteria for lactic acid bacteria to be used as functional starter cultures in dry sausage production: An update. Meat Sci 2007; 76(1): 138-46.10.1016/j.meatsci.2006.10.02222064200Search in Google Scholar

9. Salyers AA, Gupta A, Wang Y. Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol 2004; 12(9): 412-6.10.1016/j.tim.2004.07.00415337162Open DOISearch in Google Scholar

10. Teuber M, Meile L, Schwarz F. Acquired antibiotic resistance in lactic acid bacteria from food. Antonie Van Leeuwenhoek 1999; 76(1-4): 115-37.10.1023/A:1002035622988Search in Google Scholar

11. Drake JW, Charlesworth B, Charlesworth D, Crow JF. Rates of spontaneous mutation. Genetics 1998; 148(4): 1667-86.10.1093/genetics/148.4.1667Search in Google Scholar

12. Khachatourians GG. Agricultural use of antibiotics and the evolution and transfer of antibiotic-resistant bacteria. CMAJ Can Med Assoc J 1998; 159(9): 1129-36.Search in Google Scholar

13. Wang HH, Manuzon M, Lehman M, Wan K, Luo H, Wittum TE, et al. Food commensal microbes as a potentially important avenue in transmitting antibiotic resistance genes. FEMS Microbiol Lett 2006; 254(2): 226-31.10.1111/j.1574-6968.2005.00030.xSearch in Google Scholar

14. Aminov RI, Mackie RI. Evolution and ecology of antibiotic resistance genes. FEMS Microbiol Lett. 2007; 271(2): 147-61.10.1111/j.1574-6968.2007.00757.xSearch in Google Scholar

15. Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell 2012; 148(6): 1258-70.10.1016/j.cell.2012.01.035Search in Google Scholar

16. Gueimonde M, Salminen S, Isolauri E. Presence of specific antibiotic (tet) resistance genes in infant faecal microbiota. FEMS Immunol Med Microbiol 2006; 48(1): 21-5.10.1111/j.1574-695X.2006.00112.xSearch in Google Scholar

17. Hu Y, Yang X, Qin J, Lu N, Cheng G, Wu N, et al. Metagenome- wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota. Nat Commun 2013; 4: 2151.10.1038/ncomms3151Search in Google Scholar

18. Nandi S, Maurer JJ, Hofacre C, Summers AO. Gram-positive bacteria are a major reservoir of Class 1 antibiotic resistance integrons in poultry litter. Proc Natl Acad Sci U S A 2004; 101(18): 7118-22.10.1073/pnas.0306466101Search in Google Scholar

19. Gueimonde M, Sanchez B, G. de los Reyes-Gavilan C, Margolles A. Antibiotic resistance in probiotic bacteria. Front Microbiol 4: 202.10.3389/fmicb.2013.00202Search in Google Scholar

20. Hummel AS, Hertel C, Holzapfel WH, Franz CMAP. Antibiotic resistances of starter and probiotic strains of lactic acid bacteria. Appl Environ Microbiol 2007; 73(3): 730-9.10.1128/AEM.02105-06Search in Google Scholar

21. Tannock GW. Probiotic properties of lactic-acid bacteria: plenty of scope for fundamental R & D. Trends Biotechnol 1997; 15(7): 270-4.10.1016/S0167-7799(97)01056-1Open DOISearch in Google Scholar

22. Klein G, Pack A, Bonaparte C, Reuter G. Taxonomy and physiology of probiotic lactic acid bacteria. Int J Food Microbiol 1998; 41(2): 103-25.10.1016/S0168-1605(98)00049-XOpen DOISearch in Google Scholar

23. Lancefield RC. A serological differentiation of human and other groups of hemolytic streptococci. J Exp Med 1933; 57(4): 571-95.10.1084/jem.57.4.571Open DOISearch in Google Scholar

24. Schleifer KH, Kilpper-Balz R. Transfer of Streptococcus faecalis and Streptococcus faecium to the Genus Enterococcus nom. rev. as Enterococcus faecalis comb. nov. and Enterococcus faecium comb. nov. Int J Syst Evol Microbiol 1984; 34(1): 31-4.Search in Google Scholar

25. Schleifer KH, Kraus J, Dvorak C, Kilpper-Balz R, Collins MD, Fischer W. Transfer of Streptococcus lactis and Related Streptococci to the Genus Lactococcus gen. nov. Syst Appl Microbiol 1985; 6(2): 183-95.10.1016/S0723-2020(85)80052-7Search in Google Scholar

26. Facklam R, Elliott JA. Identification, classification, and clinical relevance of catalase-negative, gram-positive cocci, excluding the streptococci and enterococci. Clin Microbiol Rev 1995; 8(4): 479-95.10.1128/CMR.8.4.479Search in Google Scholar

27. Furet J-P, Firmesse O, Gourmelon M, Bridonneau C, Tap J, Mondot S, et al. Comparative assessment of human and farm animal faecal microbiota using real-time quantitative PCR. FEMS Microbiol Ecol 2009; 68(3): 351-62.10.1111/j.1574-6941.2009.00671.xOpen DOISearch in Google Scholar

28. Muller T, Ulrich A, Ott EM, Muller M. Identification of plant-associ ated enterococci. J Appl Microbiol 2001; 91(2): 268-78.10.1046/j.1365-2672.2001.01373.xOpen DOISearch in Google Scholar

29. Salama MS, Musafija-Jeknic T, Sandine WE, Giovannoni SJ. An Ecological Study of Lactic Acid Bacteria: Isolation of New Strains of Lactococcus Including Lactococcus lactis subspecies cremoris. J Dairy Sci 1995; 78(5): 1004-17.10.3168/jds.S0022-0302(95)76716-9Open DOISearch in Google Scholar

30. Vanhoutte T, Huys G, Brandt E, Swings J. Temporal stability analysis of the microbiota in human feces by denaturing gradient gel electrophoresis using universal and group-specific 16S rRNA gene primers. FEMS Microbiol Ecol 2004; 48(3): 437-46.10.1016/j.femsec.2004.03.00119712312Open DOISearch in Google Scholar

31. Lavilla Lerma L, Benomar N, Valenzuela AS, Casado Munoz M del C, Galvez A, Abriouel H. Role of EfrAB efflux pump in biocide tolerance and antibiotic resistance of Enterococcus faecalis and Enterococcus faecium isolated from traditional fermented foods and the effect of EDTA as EfrAB inhibitor. Food Microbiol 2014;44: 249-57.10.1016/j.fm.2014.06.00925084670Open DOISearch in Google Scholar

32. Leroy F, De Vuyst L. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci Technol 2004; 15(2): 67-78.10.1016/j.tifs.2003.09.004Open DOISearch in Google Scholar

33. Pogačić T, Kagkli D-M, Sikora S, Kalit S, Havranek J, Samaržija D. Experimental approaches for identification of indigenous lactococci isolated from traditional dairy products. Mljekarstvo 61: 3-14.Search in Google Scholar

34. Lucera A, Costa C, Conte A, Del Nobile MA. Food applications of natural antimicrobial compounds. Front Microbiol 2012; 3(287): 287.10.3389/fmicb.2012.00287344119523060862Search in Google Scholar

35. Franz CMAP, Huch M, Abriouel H, Holzapfel W, Galvez A. Enterococci as probiotics and their implications in food safety. Int J Food Microbiol 2011; 151(2): 125-40.10.1016/j.ijfoodmicro.2011.08.01421962867Search in Google Scholar

36. Kimoto H, Kurisaki J, Tsuji NM, Ohmomo S, Okamoto T. Lactococci as probiotic strains: adhesion to human enterocyte-like Caco-2 cells and tolerance to low pH and bile. Lett Appl Microbiol 1999; 29(5): 313-6.10.1046/j.1365-2672.1999.00627.x10664972Open DOISearch in Google Scholar

37. Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J. Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol 2010; 8(4): 251-9.10.1038/nrmicro231220190823Open DOISearch in Google Scholar

38. Martinez JL. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ Pollut Barking Essex 1987 2009; 157(11): 2893-902.10.1016/j.envpol.2009.05.05119560847Search in Google Scholar

39. Werner G, Strommenger B, Witte W. Acquired vancomycin resistance in clinically relevant pathogens. Future Microbiol 2008; 3: 547-562.10.2217/17460913.3.5.54718811239Search in Google Scholar

40. Benveniste R, Davies J. Mechanisms of antibiotic resistance in bacteria. Annu Rev Biochem 1973; 42: 471-506.10.1146/annurev.bi.42.070173.0023514581231Open DOISearch in Google Scholar

41. Davies J. Inactivation of antibiotics and the dissemination of resistance genes. Science 1994; 264(5157): 375-82.10.1126/science.81536248153624Search in Google Scholar

42. Tenover FC. Mechanisms of Antimicrobial Resistance in Bacteria. Am J Med 2006; 119(6): 3-10.10.1016/j.amjmed.2006.03.01116735149Search in Google Scholar

43. Chopra I, Roberts M. Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance. Microbiol Mol Biol Rev 2001; 65(2): 232-60.10.1128/MMBR.65.2.232-260.20019902611381101Open DOISearch in Google Scholar

44. Bolhuis H, Molenaar D, Poelarends G, Veen HW van, Poolman B, Driessen AJ, et al. Proton motive force-driven and ATP-dependent drug extrusion systems in multidrug-resistant Lactococcus lactis. J Bacteriol 1994; 176(22): 6957-64.10.1128/jb.176.22.6957-6964.1994Search in Google Scholar

45. Chang G. Multidrug resistance ABC transporters. FEBS Lett 2003; 555(1): 102-5.10.1016/S0014-5793(03)01085-8Search in Google Scholar

46. Delmar JA, Su C-C, Yu EW. Bacterial Multidrug Efflux Transporters. Annu Rev Biophys 2014; 43(1): 93-117.10.1146/annurev-biophys-051013-022855Open DOISearch in Google Scholar

47. Van Bambeke F, Balzi E, Tulkens PM. Antibiotic efflux pumps. Biochem Pharmacol 2000; 60(4): 457-70. 10.1016/S0006-2952(00)00291-4Open DOISearch in Google Scholar

48. van Veen HW, Konings WN. The ABC family of multidrug transporters in microorganisms. Biochim Biophys Acta 1998; 1365(1- 2): 31-6.10.1016/S0005-2728(98)00039-5Search in Google Scholar

49. Jack DL, Yang NM, Saier MH. The drug/metabolite transporter superfamily. Eur J Biochem FEBS 2001; 268(13): 3620-39.10.1046/j.1432-1327.2001.02265.xSearch in Google Scholar

50. Bolhuis H, Poelarends G, van Veen HW, Poolman B, Driessen AJ, Konings WN. The Lactococcal lmrP gene encodes a proton motive force-dependent drug transporter. J Biol Chem 1995; 270(44): 26092-8.10.1074/jbc.270.44.26092Search in Google Scholar

51. Hatfield HL, Thomas A. Elimination of feed additive derived interferences in the assay for avoparcin. The Analyst 1986; 111(1): 95-6.10.1039/an9861100095Search in Google Scholar

52. Kruse H, Johansen BK, Rorvik LM, Schaller G. The use of avoparcin as a growth promoter and the occurrence of vancomycin-resistant Enterococcus species in Norwegian poultry and swine production. Microb Drug Resist Larchmt N 1999; 5(2): 135-9.10.1089/mdr.1999.5.135Open DOISearch in Google Scholar

53. Aarestrup FM, Agerso Y, Gerner-Smidt P, Madsen M, Jensen LB. Comparison of antimicrobial resistance phenotypes and resistance genes in Enterococcus faecalis and Enterococcus faecium from humans in the community, broilers, and pigs in Denmark. Diagn Microbiol Infect Dis 2000; 37(2): 127-37.10.1016/S0732-8893(00)00130-9Open DOISearch in Google Scholar

54. Aminov RI, Garrigues-Jeanjean N, Mackie RI. Molecular Ecology of Tetracycline Resistance: Development and Validation of Primers for Detection of Tetracycline Resistance Genes Encoding Ribosomal Protection Proteins. Appl Environ Microbiol 2001; 67(1): 22-32.10.1128/AEM.67.1.22-32.2001Search in Google Scholar

55. Pavia M, Nobile CGA, Salpietro L, Angelillo IF. Vancomycin Resistance and Antibiotic Susceptibility of Enterococci in Raw Meat. J Food Prot. 2000; 63(7): 912-5.10.4315/0362-028X-63.7.912Search in Google Scholar

56. Leavis HL, Willems RJL, Top J, Bonten MJM. High-level ciprofloxacin resistance from point mutations in gyrA and parC confined to global hospital-adapted clonal lineage CC17 of Enterococcus faecium. J Clin Microbiol. 2006; 44(3): 1059-64.10.1128/JCM.44.3.1059-1064.2006Search in Google Scholar

57. Arias CA, Murray BE. The rise of the Enterococcus: beyond vancomycin resistance. Nat Rev Microbiol 2012; 10(4): 266-78.10.1038/nrmicro2761Open DOISearch in Google Scholar

58. Deshpande LM, Fritsche TR, Moet GJ, Biedenbach DJ, Jones RN. Antimicrobial resistance and molecular epidemiology of vancomycin- resistant enterococci from North America and Europe: a report from the SENTRY antimicrobial surveillance program. Diagn Microbiol Infect Dis 2007; 58(2): 163-70.10.1016/j.diagmicrobio.2006.12.022Search in Google Scholar

59. Werner G, Coque TM, Hammerum AM, Hope R, Hryniewicz W, Johnson A, et al. Emergence and spread of vancomycin resistance among enterococci in Europe. Euro Surveill Bull 2008; 13: 19046.10.2807/ese.13.47.19046-enSearch in Google Scholar

60. Horvitz RA, von Graevenitz A. A Clinical Study of the Role of Enterococci as Sole Agents of Wound and Tissue Infection. Yale J Biol Med 1977; 50(4): 391-5.Search in Google Scholar

61. Weber DJ, Rutala WA. Role of environmental contamination in the transmission of vancomycin-resistant enterococci. Infect Control Hosp Epidemiol 1997; 18(5): 306-9.10.2307/30141222Search in Google Scholar

62. Palmer KL, Gilmore MS. Multidrug-Resistant Enterococci Lack CRISPR-cas. mBio 2010; 1(4): e00227-10.10.1128/mBio.00227-10Search in Google Scholar

63. van Veen HW, Putman M, Margolles A, Sakamoto K, Konings WN. Structure-function analysis of multidrug transporters in Lactococcus lactis. Biochim Biophys Acta 1999; 1461(2): 201-6.10.1016/S0005-2736(99)00172-8Open DOISearch in Google Scholar

64. De Fabrizio SV, Parada JL, Ledford RA. Antibiotic resistance of Lactococcus lactis : an approach of genetic determinants location through model system. MAN Microbiol Aliments Nutr 1994 ;12(3): 307-15.Search in Google Scholar

65. Kastner S, Perreten V, Bleuler H, Hugenschmidt G, Lacroix C, Meile L. Antibiotic susceptibility patterns and resistance genes of starter cultures and probiotic bacteria used in food. Syst Appl Microbiol 2006; 29(2): 145-55.10.1016/j.syapm.2005.07.00916464696Open DOISearch in Google Scholar

66. Katla AK, Kruse H, Johnsen G, Herikstad H. Antimicrobial susceptibility of starter culture bacteria used in Norwegian dairy products. Int J Food Microbiol 2001; 67(1-2): 147-52.10.1016/S0168-1605(00)00522-5Search in Google Scholar

67. Klarel I, Konstabel C, Werner G, Huys G, Vankerckhoven V, Kahlmeter G, et al. Antimicrobial susceptibilities of Lactobacillus, Pediococcus and Lactococcus human isolates and cultures intended for probiotic or nutritional use. J Antimicrob Chemother 2007; 59(5): 900-12.10.1093/jac/dkm035Search in Google Scholar

68. van Veen HW, Margolles A, Putman M, Sakamoto K, Konings WN. Multidrug resistance in lactic acid bacteria: molecular mechanisms and clinical relevance. Antonie Van Leeuwenhoek 1999; 76(1-4): 347-52.10.1023/A:1002033923510Search in Google Scholar

69. Jacek Lubelski A de J. LmrCD is a major multidrug resistance transporter in Lactococcus lactis. Mol Microbiol. Mol Microbiol 2006; 61(3): 771-81.10.1111/j.1365-2958.2006.05267.xSearch in Google Scholar

70. Lubelski J, Konings WN, Driessen AJM. Distribution and physiology of ABC-type transporters contributing to multidrug resistance in bacteria. Microbiol Mol Biol Rev MMBR 2007; 71(3): 463-76.10.1128/MMBR.00001-07Open DOISearch in Google Scholar

71. Ren Q, Kang KH, Paulsen IT. TransportDB: a relational database of cellular membrane transport systems. Nucleic Acids Res 2004; 32(1): 284-8.10.1093/nar/gkh016Search in Google Scholar

72. Dawson RJP, Locher KP. Structure of a bacterial multidrug ABC transporter. Nature 2006; 443(7108): 180-5.10.1038/nature05155Search in Google Scholar

73. Putman M, Van Veen HW, Degener JE, Konings WN. Antibiotic resistance: era of the multidrug pump. Mol Microbiol 2000; 36(3): 772-3.10.1046/j.1365-2958.2000.01871.xSearch in Google Scholar

74. Bourdineaud J-P, Nehme B, Tesse S, Lonvaud-Funel A. A bacterial gene homologous to ABC transporters protect Oenococcus oeni from ethanol and other stress factors in wine. Int J Food Microbiol 2004; 92(1): 1-14.10.1016/S0168-1605(03)00162-4Open DOISearch in Google Scholar

75. Konings WN, Kok J, Kuipers OP, Poolman B. Lactic acid bacteria: the bugs of the new millennium. Curr Opin Microbiol 2000; 3(3): 276-82.10.1016/S1369-5274(00)00089-8Open DOISearch in Google Scholar

76. Konings WN, Lolkema JS, Bolhuis H, van Veen HW, Poolman B, Driessen AJ. The role of transport processes in survival of lactic acid bacteria. Energy transduction and multidrug resistance. Antonie Van Leeuwenhoek 1997; 71(1-2): 117-28.10.1023/A:1000143525601Search in Google Scholar

77. Konings WN, Poelarends GJ. Bacterial multidrug resistance mediated by a homologue of the human multidrug transporter P-glycoprotein. IUBMB Life 2002; 53(4-5): 213-8.10.1080/15216540212646Search in Google Scholar

78. Poelarends GJ, Mazurkiewicz P, Konings WN. Multidrug transporters and antibiotic resistance in Lactococcus lactis. Biochim Biophys Acta BBA - Bioenerg 2002; 1555(1-3): 1-7.10.1016/S0005-2728(02)00246-3Search in Google Scholar

79. Putman M, van Veen HW, Degener JE, Konings WN. The lactococcal secondary multidrug transporter LmrP confers resistance to lincosamides, macrolides, streptogramins and tetracyclines. Microbiol Read Engl 2001; 147(10): 2873-80.10.1099/00221287-147-10-2873Search in Google Scholar

80. Schaedler TA, Veen HW van. A flexible cation binding site in the multidrug major facilitator superfamily transporter LmrP is associated with variable proton coupling. FASEB J 2010; 24(10): 3653-61.2047274910.1096/fj.10-156927Search in Google Scholar

81. Markham PN, Neyfakh AA. Efflux-mediated drug resistance in Gram-positive bacteria. Curr Opin Microbiol 2001; 4(5): 509-14.10.1016/S1369-5274(00)00243-5Open DOISearch in Google Scholar

82. Sood S, Malhotra M, Das BK, Kapil A. Enterococcal infections & antimicrobial resistance. Indian J Med Res 2008; 128(2): 111-21.Search in Google Scholar

83. Courvalin P. Predictable and unpredictable evolution of antibiotic resistance. J Intern Med 2008; 264(1): 4-16.10.1111/j.1365-2796.2008.01940.x18397243Search in Google Scholar

84. Lee E-W, Huda MN, Kuroda T, Mizushima T, Tsuchiya T. EfrAB, an ABC multidrug efflux pump in Enterococcus faecalis. Antimicrob Agents Chemother 2003; 47(12): 3733-8.10.1128/AAC.47.12.3733-3738.200329619914638474Search in Google Scholar

85. Li X-Z, Nikaido H. Efflux-mediated drug resistance in bacteria. Drugs 2004; 64(2): 159-204.10.2165/00003495-200464020-0000414717618Search in Google Scholar

86. Perreten V, Schwarz F, Cresta L, Boeglin M, Dasen G, Teuber M. Antibiotic resistance spread in food. Nature 1997; 389(6653): 801-2.10.1038/397679349809Search in Google Scholar

87. Arsene S, Leclercq R. Role of a qnr-like gene in the intrinsic resistance of Enterococcus faecalis to fluoroquinolones. Antimicrob Agents Chemother 2007; 51(9): 3254-8.10.1128/AAC.00274-07204317117620379Search in Google Scholar

88. Depardieu F, Podglajen I, Leclercq R, Collatz E, Courvalin P. Modes and Modulations of Antibiotic Resistance Gene Expression. Clin Microbiol Rev 2007; 20(1): 79-114.10.1128/CMR.00015-06179762917223624Open DOISearch in Google Scholar

89. Dutka-Malen S, Evers S, Courvalin P. Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. J Clin Microbiol 1995; 33(1): 24-7.10.1128/jcm.33.1.24-27.19952278727699051Search in Google Scholar

90. Fines M, Perichon B, Reynolds P, Sahm DF, Courvalin P. VanE, a new type of acquired glycopeptide resistance in Enterococcus faecalis BM4405. Antimicrob Agents Chemother 1999; 43(9): 2161-4.10.1128/AAC.43.9.21618944010471558Search in Google Scholar

91. Teuber M, Schwarz F, Meile L. Antibiotic Resistance and Transfer in Lactic Acid Bacteria. In: Wood BJB, Warner PJ, editors. Genetics of Lactic Acid Bacteria (Internet). Springer US 2003. p. 317-54. Available from: http://link.springer.com/chapter/10.1007/978-1-4615-0191-6_1110.1007/978-1-4615-7090-5_11Search in Google Scholar

92. Florez AB, Delgado S, Mayo B. Antimicrobial susceptibility of lactic acid bacteria isolated from a cheese environment. Can J Microbiol 2005; 51(1): 51-8.10.1139/w04-11415782234Search in Google Scholar

93. Walther C, Rossano A, Thomann A, Perreten V. Antibiotic resistance in Lactococcus species from bovine milk: presence of a mutated multidrug transporter mdt(A) gene in susceptible Lactococcus garvieae strains. Vet Microbiol 2008; 131(3-4): 348-57.10.1016/j.vetmic.2008.03.00818472369Search in Google Scholar

94. Manson JM, Hancock LE, Gilmore MS. Mechanism of chromosomal transfer of Enterococcus faecalis pathogenicity island, capsule, antimicrobial resistance, and other traits. Proc Natl Acad Sci U S A 2010; 107(27): 12269-74.10.1073/pnas.1000139107290142720566881Search in Google Scholar

95. Mills S, McAuliffe OE, Coffey A, Fitzgerald GF, Ross RP. Plasmids of lactococci - genetic accessories or genetic necessities? FEMS Microbiol Rev 2006; 30(2): 243-73.10.1111/j.1574-6976.2005.00011.x16472306Open DOISearch in Google Scholar

96. Mundy LM, Sahm DF, Gilmore M. Relationships between enterococcal virulence and antimicrobial resistance. Clin Microbiol Rev 2000; 13(4): 513-22.10.1128/CMR.13.4.513-522.2000Open DOISearch in Google Scholar

97. Bačun-Družina V, Mrvčić J, Butorac A, Gjuračić K. The influence of gene transfer on the lactic acid bacteria evolution. Mljekarstvo 2009; 59(3): 181-92.Search in Google Scholar

98. Devirgiliis C, Zinno P, Perozzi G. Update on antibiotic resistance in foodborne Lactobacillus and Lactococcus species. Front Microbiol 4: 301.10.3389/fmicb.2013.00301Search in Google Scholar

99. Gasson MJ. Genetic transfer systems in lactic acid bacteria. Antonie Van Leeuwenhoek 1983; 49(3): 275-82. 10.1007/BF00399503Search in Google Scholar

100. Ravi A, Avershina E, Ludvigsen J, L’Abee-Lund TM, Rudi K. Integrons in the Intestinal Microbiota as Reservoirs for Transmission of Antibiotic Resistance Genes. Pathogens 2014; 3(2): 238-48.10.3390/pathogens3020238Search in Google Scholar

101. Davies J, Davies D. Origins and Evolution of Antibiotic Resistance. Microbiol Mol Biol Rev MMBR 2010; 74(3): 417-33.10.1128/MMBR.00016-10Search in Google Scholar

102. Toleman MA, Bennett PM, Walsh TR. ISCR elements: novel gene-capturing systems of the 21st century? Microbiol Mol Biol Rev MMBR 2006; 70(2): 296-316.10.1128/MMBR.00048-05Open DOISearch in Google Scholar

103. Rowe-Magnus DA, Mazel D. Integrons: natural tools for bacterial genome evolution. Curr Opin Microbiol 2001; 4(5): 565-9.10.1016/S1369-5274(00)00252-6Search in Google Scholar

104. Mathur S, Singh R. Antibiotic resistance in food lactic acid bacteria ‒ a review. Int J Food Microbiol 2005; 105(3): 281-95.10.1016/j.ijfoodmicro.2005.03.00816289406Open DOISearch in Google Scholar

105. Wang HH, Manuzon M, Lehman M, Wan K, Luo H, Wittum TE, et al. Food commensal microbes as a potentially important avenue in transmitting antibiotic resistance genes. FEMS Microbiol Lett 2006; 255(2)328-328.10.1111/j.1574-6968.2006.00138.xSearch in Google Scholar

106. Toomey N, Monaghan A, Fanning S, Bolton DJ. Assessment of antimicrobial resistance transfer between lactic acid bacteria and potential foodborne pathogens using in vitro methods and mating in a food matrix. Foodborne Pathog Dis 2009; 6(8): 925-33.10.1089/fpd.2009.027819799525Open DOISearch in Google Scholar

107. Toomey N, Monaghan A, Fanning S, Bolton D. Transfer of antibiotic resistance marker genes between lactic acid bacteria in model rumen and plant environments. Appl Environ Microbiol 2009; 75(10): 3146-52.10.1128/AEM.02471-08268164119270126Search in Google Scholar

108. Palmer KL, Kos VN, Gilmore MS. Horizontal gene transfer and the genomics of enterococcal antibiotic resistance. Curr Opin Microbiol 2010; 13(5): 632-9.10.1016/j.mib.2010.08.004Open DOISearch in Google Scholar

109. Igimi S, Ryu CH, Park SH, Sasaki Y, Sasaki T, Kumagai S. Transfer of conjugative plasmid pAM beta 1 from Lactococcus lactis to mouse intestinal bacteria. Lett Appl Microbiol 1996; 23(1): 31-5.10.1111/j.1472-765X.1996.tb00023.xOpen DOISearch in Google Scholar

110. Clewell DB. Movable genetic elements and antibiotic resistance in enterococci. Eur J Clin Microbiol Infect Dis 1990; 9(2): 90-102.10.1007/BF01963632Open DOISearch in Google Scholar

111. Maki T, Santos MD, Kondo H, Hirono I, Aoki T. A Transferable 20-Kilobase Multiple Drug Resistance-Conferring R Plasmid (pKL0018) from a Fish Pathogen (Lactococcus garvieae) Is Highly Homologous to a Conjugative Multiple Drug Resistance-Conferring Enterococcal Plasmid. Appl Environ Microbiol 2009; 75(10): 3370-2.10.1128/AEM.00039-09Search in Google Scholar

112. Schwarz FV, Perreten V, Teuber M. Sequence of the 50-kb conjugative multiresistance plasmid pRE25 from Enterococcus faecalis RE25. Plasmid 2001; 46(3): 170-87.10.1006/plas.2001.1544Search in Google Scholar

113. Weisblum B. Erythromycin resistance by ribosome modification. Antimicrob Agents Chemother 1995; 39(3): 577-85.10.1128/AAC.39.3.577Search in Google Scholar

114. Cauwerts K, Decostere A, De Graef EM, Haesebrouck F, Pasmans F. High prevalence of tetracycline resistance in Enterococcus isolates from broilers carrying the erm(B) gene. Avian Pathol J WVPA. 2007; 36(5): 395-9.10.1080/03079450701589167Open DOISearch in Google Scholar

115. Clewell DB, Flannagan SE, Jaworski DD. Unconstrained bacterial promiscuity: the Tn916-Tn1545 family of conjugative transposons. Trends Microbiol 1995; 3(6): 229-36.10.1016/S0966-842X(00)88930-1Search in Google Scholar

116. Huys G, D’Haene K, Collard J-M, Swings J. Prevalence and molecular characterization of tetracycline resistance in Enterococcus isolates from food. Appl Environ Microbiol 2004; 70(3): 1555-62.10.1128/AEM.70.3.1555-1562.200436834015006778Search in Google Scholar

117. Shaw JH, Clewell DB. Complete nucleotide sequence of macrolide- lincosamide-streptogramin B-resistance transposon Tn917 in Streptococcus faecalis. J Bacteriol 1985; 164(2): 782-96.10.1128/jb.164.2.782-796.19852143202997130Search in Google Scholar

118. Bertrand S, Huys G, Yde M, D’Haene K, Tardy F, Vrints M, et al. Detection and characterization of tet(M) in tetracycline-resistant Listeria strains from human and food-processing origins in Belgium and France. J Med Microbiol 2005; 54(12): 1151-6.10.1099/jmm.0.46142-0Open DOISearch in Google Scholar

119. Sievert DM, Rudrik JT, Patel JB, McDonald LC, Wilkins MJ, Hageman JC. Vancomycin-resistant Staphylococcus aureus in the United States, 2002-2006. Clin Infect Dis Off Publ Infect Dis Soc Am 2008; 46(5): 668-74.10.1086/527392Search in Google Scholar

120. Daly C, Fitzgerald GF, O’Connor L, Davis R. Technological and Health benefits of Dairy Starter Cultures. Int Dairy J 1998; 8(3): 195-205.10.1016/S0958-6946(98)00042-9Search in Google Scholar

121. Levy SB. The challenge of antibiotic resistance. Sci Am 1998; 278(3): 46-53.10.1038/scientificamerican0398-469487702Search in Google Scholar

122. Nallapareddy SR, Wenxiang H, Weinstock GM, Murray BE. Molecular characterization of a widespread, pathogenic, and antibiotic resistance-receptive Enterococcus faecalis lineage and dissemination of its putative pathogenicity island. J Bacteriol 2005; 187(16): 5709-18.10.1128/JB.187.16.5709-5718.2005119607116077117Search in Google Scholar

123. Capita R, Alonso-Calleja C. Antibiotic-resistant bacteria: a challenge for the food industry. Crit Rev Food Sci Nutr 2013; 53(1): 11-48.10.1080/10408398.2010.51983723035919Search in Google Scholar

124. Huycke MM, Sahm DF, Gilmore MS. Multiple-drug resistant enterococci: the nature of the problem and an agenda for the future. Emerg Infect Dis 1998; 4(2): 239-49.10.3201/eid0402.98021126401419621194Open DOISearch in Google Scholar

125. Wang H, McEntire JC, Zhang L, Li X, Doyle M. The transfer of antibiotic resistance from food to humans: facts, implications and future directions. Rev Sci Tech Int Off Epizoot 2012; 31(1): 249-60.10.20506/rst.31.1.211722849280Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo