Open Access

Antiepileptic drugs as a new therapeutic concept for the prevention of cognitive impairment and Alzheimer’s disease. Recent advances


Cite

Amatniek J.C., Hauser W.A., DelCastillo-Castaneda C., Jacobs D.M., Marder K., Bell K., et al.:Incidence and predictors of seizures in patients with Alzheimer’s disease. Epilepsia, 2006, 47: 867–872.10.1111/j.1528-1167.2006.00554.xSearch in Google Scholar

Andrews-Zwilling Y., Bien-Ly N., Xu Q., Li G., Bernardo A., Yoon S.Y., et al.:Apolipoprotein E4 causes age- and Tau-dependent impairment of GABAergic interneurons, leading to learning and memory deficits in mice. J. Neurosci., 2010, 30: 13707–13717.10.1523/JNEUROSCI.4040-10.2010Search in Google Scholar

Armstrong R.A.:What causes Alzheimer’s disease? Folia Neuropathol., 2013, 51: 169–188.10.5114/fn.2013.37702Search in Google Scholar

Bakker A., Albert M.S., Krauss G., Speck C.L., Gallagher M.:Response of the medial temporal lobe network in amnestic mild cognitive impairment to therapeutic intervention as-sessed by fMRI and memory task performance. Neuroimage Clin., 2015, 7: 688–698.10.1016/j.nicl.2015.02.009Search in Google Scholar

Bakker A., Krauss G.L., Albert M.S., Speck C.L., Jones L.R., Stark C.E., et al.:Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment. Neuron, 2012, 74: 467–474.10.1016/j.neuron.2012.03.023Search in Google Scholar

Bokde A.L., Ewers M., Hampel H.:Assessing neuronal networks: understanding Alzheimer’s disease. Prog. Neurobiol., 2009, 89: 125–133.10.1016/j.pneurobio.2009.06.004Search in Google Scholar

Busche M.A., Chen X., Henning H.A., Reichwald J., Staufen-biel M., Sakmann B., Konnerth A.:Critical role of soluble amyloid-β for early hippocampal hyperactivity in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2012, 109: 8740–8745.10.1073/pnas.1206171109Search in Google Scholar

Callaway E.:A gene for Alzheimer’s makes you smarter. New Scientist, 2010, 205: 12–13.10.1016/S0262-4079(10)60334-XSearch in Google Scholar

Cheng X.L., Li M.K.:Effect of topiramate on apoptosis-related protein expression of hippocampus in model rats with Alzheimers disease. Eur. Rev. Med. Pharmacol. Sci., 2014, 18: 761–768.Search in Google Scholar

Corbett B.F., Leiser S.C., Ling H.P., Nagy R., Breysse N., Zhang X., et al.:Sodium channel cleavage is associated with aberrant neuronal activity and cognitive deficits in a mouse model of Alzheimer’s disease. J. Neurosci., 2013, 33: 7020–7026.10.1523/JNEUROSCI.2325-12.2013661887523595759Search in Google Scholar

Crouch P.J., Harding S.M., White A.R., Camakaris J., Bush A.I., Masters C.L.:Mechanisms of Abeta mediated neurodegeneration in Alzheimer’s disease. Int. J. Biochem. Cell Biol., 2008, 40: 181–198.10.1016/j.biocel.2007.07.01317804276Search in Google Scholar

Cumbo E., Ligori L.D.:Levetiracetam, lamotrigine, and phenobarbital in patients with epileptic seizures and Alzheimer’s disease. Epilepsy Behav., 2010, 17: 461–466.10.1016/j.yebeh.2010.01.015Search in Google Scholar

Custer K.L., Austin N.S., Sullivan J.M., Bajjalieh S.M.:Synaptic vesicle protein 2 enhances release probability at quiescent synapses. J. Neurosci., 2006, 26: 1303–1313.10.1523/JNEUROSCI.2699-05.2006Search in Google Scholar

Dennis N.A., Browndyke J.N., Stokes J., Need A., Burke J.R., Welsh-Bohmer K.A., Cabeza R.:Temporal lobe functional activity and connectivity in young adult APOE var epsilon4 carriers. Alzheimers Dement., 2010, 6: 303–311.10.1016/j.jalz.2009.07.003Search in Google Scholar

De-Paula V.J., Radanovic M., Diniz B.S., Forlenza O.V.:Alzheimer’s disease. Subcell Biochem., 2012, 65: 329–352.10.1007/978-94-007-5416-4_14Search in Google Scholar

Filippi M., Agosta F.:Structural and functional network connectivity breakdown in Alzheimer’s disease studied with magnetic resonance imaging techniques. J. Alzheimers Dis., 2011, 24: 455–474.10.3233/JAD-2011-101854Search in Google Scholar

Fleisher A.S., Truran D., Mai J.T., Langbaum J.B., Aisen P.S., Cummings J.L., et al.:Chronic divalproex sodium use and brain atrophy in Alzheimer disease. Neurology, 2011, 77: 1263–1271.10.1212/WNL.0b013e318230a16cSearch in Google Scholar

Fogel H., Frere S., Segev O., Bharill S., Shapira I., Gazit N., et al.:APP homodimers transduce an amyloid-β-mediated increase in release probability at excitatory synapses. Cell Rep., 2014, 7: 1560–1576.10.1016/j.celrep.2014.04.024Search in Google Scholar

Forstl H., Burns A., Levy R., Cairns N., Luthert P., Lantos P.:Neurologic signs in Alzheimer’s disease: results of a prospective clinical and neuropathologic study. Arch. Neurol., 1992, 49: 1038–1042.10.1001/archneur.1992.00530340054018Search in Google Scholar

Fu W., Shi D., Westaway D., Jhamandas J.H.:Bioenergetic mechanisms in astrocytes may contribute to amyloid plaque deposition and toxicity. J. Biol. Chem., 2015, 290: 12504–12513.10.1074/jbc.M114.618157Search in Google Scholar

Hardy J., Allsop D.:Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol. Sci., 1991, 12: 383–388.10.1016/0165-6147(91)90609-VSearch in Google Scholar

Harris J.A., Devidze N., Verret L., Ho K., Halabisky B., Thwin M.T., et al.:Transsynaptic progression of amyloid-β-induced neuronal dysfunction within the entorhinal-hippocampal network. Neuron, 2010, 68: 428–441.10.1016/j.neuron.2010.10.020Search in Google Scholar

Irizarry M.C., Jin S., He F., Emond J.A., Raman R., Thomas R.G., et al.:Incidence of New-Onset Seizures in Mild to Moderate Alzheimer Disease. Arch. Neurol., 2012, 69: 368–372.10.1001/archneurol.2011.830Search in Google Scholar

Kellner V., Menkes-Caspi N., Beker S., Stern E.A.:Amyloid-β alters ongoing neuronal activity and excitability in the frontal cortex. Neurobiol. Aging, 2014, 35: 1982–1991.10.1016/j.neurobiolaging.2014.04.001Search in Google Scholar

Khairallah M.I., Kassem L.A.:Alzheimer’s disease: current status of etiopathogenesis and therapeutic strategies. Pak. J. Biol. Sci., 2011, 14: 257–272.10.3923/pjbs.2011.257.272Search in Google Scholar

Koh M.T., Haberman R.P., Foti S., McCown T.J., Gallagher M.:Treatment strategies targeting excess hippocampal activity benefit aged rats with cognitive impairment. Neuropsychopharmacology, 2010, 35: 1016–1025.10.1038/npp.2009.207Search in Google Scholar

Larner A.J.:Presenilin-1 mutation Alzheimer’s disease: A genetic epilepsy syndrome? Epilepsy Behav., 2011, 21: 20–22.10.1016/j.yebeh.2011.03.022Search in Google Scholar

Long Z., Zheng M., Zhao L., Xie P., Song C., Chu Y., Song W., He G.:Valproic acid attenuates neuronal loss in the brain of APP/PS1 double transgenic Alzheimer’s disease mice model. Curr. Alzheimer Res., 2013, 10: 261–269.10.2174/1567205011310030005Search in Google Scholar

Mattson M.P., Barger S.W., Cheng B., Lieberburg I., Smith-Swintosky V.L., Rydel R.E.:beta-Amyloid precursor protein metabolites and loss of neuronal Ca2+ homeostase in Alzheimer’s disease. Trends Neurosci., 1993, 16: 409–414.10.1016/0166-2236(93)90009-BSearch in Google Scholar

Montgomery K.S., Edwards G. 3rd, Levites Y., Kumar A., Myers C.E., Gluck M.A., et al.:Deficits in hippocampal-dependent transfer generalization learning accompany synaptic dysfunction in a mouse model of amyloidosis. 2015, Sep 29. doi: 10.1002/hipo.22535.10.1002/hipo.22535480357426418152Search in Google Scholar

Mowla A., Pani A.:Comparison of topiramate and risperidone for the treatment of behavioral disturbances of patients with Alzheimer disease: a double-blind, randomized clinical trial. J. Clin. Psychopharmacol., 2010, 30: 40–43.10.1097/JCP.0b013e3181ca0c5920075646Search in Google Scholar

Nygaard H.B., Kaufman A.C., Sekine-Konno T., Huh L.L., Going H., Feldman S.J., et al.:Brivaracetam, but not ethosuximide, reverses memory impairments in an Alzheimer’s disease mouse model. Alzheimers Res. Ther., 2015, 7: 25.10.1186/s13195-015-0110-9Search in Google Scholar

Palop J.J., Chin J., Roberson E.D., Wang J., Thwin M.T., Bien-Ly N., et al.:Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron, 2007, 55: 697–711.10.1016/j.neuron.2007.07.025Search in Google Scholar

Palop J.J., Mucke L.:Amyloid-beta-induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks. Nat. Neurosci., 2010, 13: 812–818.10.1038/nn.2583Search in Google Scholar

Qing H., He G., Ly P.T., Fox C.J., Staufenbiel M., Cai F., et al.:Valproic acid inhibits Abeta production, neuritic plaque formation, and behavioral deficits in Alzheimer’s disease mouse models. J. Exp. Med., 2008, 205: 2781–2789.10.1084/jem.20081588Search in Google Scholar

Quiroz Y.T., Budson A.E., Celone K., Ruiz A., Newmark R., Castrillón G., et al.:Hippocampal hyperactivation in pre-symptomatic familial Alzheimer’s disease. Ann. Neurol., 2010, 68: 865–675.10.1002/ana.22105Search in Google Scholar

Rama Rao K.V., Kielian T.:Neuron-astrocyte interactions in neurodegenerative diseases: Role of neuroinflammation. Clin. Exp. Neuroimmunol., 2015, 6: 245–263.10.1111/cen3.12237Search in Google Scholar

Sanchez P.E., Zhu L., Verret L., Vossel K.A., Orr A.G., Cirri-to J.R., et al.:Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer’s disease model. Proc. Natl. Acad. Sci. USA, 2012, 109: E2895–E2903.10.1073/pnas.1121081109Search in Google Scholar

Sendrowski K, Sobaniec W.:New antiepileptic drugs-an overwiev. Rocz. Akad. Med. Bialymst., 2005, 50 Suppl 1: 96–98.Search in Google Scholar

Sendrowski K., Sobaniec W.:Hippocampus, hippocampal sclerosis and epilepsy. Pharmacol. Rep., 2013, 65: 555–565.10.1016/S1734-1140(13)71033-8Search in Google Scholar

Sendrowski K., Sobaniec W., Stasiak-Barmuta A., Sobaniec P., Popko J.:Study of the protective effects of nootropic agents against neuronal damage induced by amyloid-beta (fragment 25–35) in cultured hippocampal neurons. Pharmacol. Rep., 2015, 67: 326–331.10.1016/j.pharep.2014.09.01325712658Search in Google Scholar

Shi J.Q., Wang B.R., Tian Y.Y., Xu J., Gao L., Zhao S.L., et al.:Antiepileptics topiramate and levetiracetam alleviate behavioral deficits and reduce neuropathology in APPswe/PS1dE9 transgenic mice. CNS Neurosci. Ther., 2013, 19: 871–881.10.1111/cns.12144649359523889921Search in Google Scholar

Simkin D., Hattori S., Ybarra N., Musial T.F., Buss E.W., Richter H., et al.:Aging-Related Hyperexcitability in CA3 Pyramidal Neurons Is Mediated by Enhanced A-Type K+ Channel Function and Expression. J. Neurosci., 2015, 35: 13206–13218.10.1523/JNEUROSCI.0193-15.2015457937826400949Search in Google Scholar

Sola I, Aso E., Frattini D., López-González I., Espargaró A., Sabaté R., et al.:Novel Levetiracetam Derivatives That Are Effective against the Alzheimer-like Phenotype in Mice: Synthesis, in Vitro, ex Vivo, and in Vivo Efficacy Studies. J. Med. Chem., 2015, 58: 6018–6032.10.1021/acs.jmedchem.5b0062426181606Search in Google Scholar

Sperling R.A., Dickerson B.C., Pihlajamaki M., Vannini P., Laviolette P.S., Vitolo O.V., et al.:Functional alterations in memory networks in early Alzheimer’s disease. Neuromolecular Med., 2010, 12: 27–43.10.1007/s12017-009-8109-7303684420069392Search in Google Scholar

Squirre L.R., Zola-Morgan S.:The medial temporal lobe memory system. Science, 1991, 253: 1380–1386.10.1126/science.18968491896849Search in Google Scholar

Stargardt, A., Swaab, D.F., Bossers, K., 2015. The storm before the quiet:neuronal hyperactivity and Aβ in the presymptomatic stages of Alzheimer’s disease. Neurobiol. Aging, 2015, 36 : 1–11.10.1016/j.neurobiolaging.2014.08.01425444609Search in Google Scholar

Strittmatter W.J., Roses A.D.:Apolipoprotein E and Alzheimer disease. Proc. Natl. Acad. Sci. USA., 1995, 92: 4725–4727.10.1073/pnas.92.11.4725417797761390Search in Google Scholar

Suzuki H., Gen K.:Clinical efficacy of lamotrigine and changes in the dosages of concomitantly used psychotropic drugs in Alzheimer’s disease with behavioural and psychological symptoms of dementia: a preliminary open-label trial. Psychogeriatrics, 2015, 15: 32–37.10.1111/psyg.1208525516380Search in Google Scholar

Talantova M., Sanz-Blasco S., Zhang X., Xia P., Akhtar M.W., Okamoto S., et al.:Aβ induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss. Proc. Natl. Acad. Sci. USA, 2013, 110: E2518–E2527.10.1073/pnas.1313546110Search in Google Scholar

Tariot P.N., Schneider L.S., Cummings J., Thomas R.G., Raman R., Jakimovich L.J., Loy R., et al.:Alzheimer’s Disease Cooperative Study Group. Chronic divalproex sodium to attenuate agitation and clinical progression of Alzheimer disease. Arch. Gen. Psychiatry, 2011, 68: 853–861.10.1001/archgenpsychiatry.2011.72700372821810649Search in Google Scholar

Texid’o L., Mart’in-Satu’e M., Alberdi E., Solsona C., Matute C.:Amyloid? Peptide oligomers directly activate NMDA receptors. Cell Calcium., 2011, 61: 184–190.10.1016/j.ceca.2011.02.00121349580Search in Google Scholar

Tiwari S.K., Seth B., Agarwal S., Yadav A., Karmakar M., Gupta S.K., et al.:Ethosuximide induces hippocampal neurogenesis and reverses cognitive deficits in amyloid-β toxin induced Alzheimer’s rat model via PI3K/Akt/Wnt/β-catenin pathway. J. Biol. Chem., 2015, Sep 29. pii: jbc.M115.652586.10.1074/jbc.M115.652586465370926420483Search in Google Scholar

Verrotti A., Prezioso G., Di Sabatino F., Franco V., Chiarelli F., Zaccara G.:The adverse event profile of levetiracetam: A meta-analysis on children and adults. Seizure, 2015, 31: 49–55.10.1016/j.seizure.2015.07.00426362377Search in Google Scholar

Vossel K.A., Beagle A.J., Rabinovici G.D., Shu H., Lee S.E., Naasan G., et al.:Seizures and epileptiform activity in the early stages of Alzheimer disease. JAMA Neurol., 2013, 70: 1158–1166.10.1001/jamaneurol.2013.136401339123835471Search in Google Scholar

Wilson I.A., Gallagher M., Eichenbaum H., Tanila H.:Neurocognitive aging: prior memories hinder new hippocampal encoding. Trends Neurosci., 2006, 29: 662–670.10.1016/j.tins.2006.10.002261470217046075Search in Google Scholar

Yao Z.G., Liang L., Liu Y., Zhang L., Zhu H., Huang L., Qin C.:Valproate improves memory deficits in an Alzheimer’s disease mouse model: investigation of possible mechanisms of action. Cell Mol. Neurobiol., 2014, 34: 805–812.10.1007/s10571-013-0012-y24939432Search in Google Scholar

Xuan A.G., Pan X.B., Wei P., Ji W.D., Zhang W.J., Liu J.H., et al.:Valproic acid alleviates memory deficits and attenuates amyloid-β deposition in transgenic mouse model of Alzheimer’s disease. Mol. Neurobiol., 2015, 51: 300–312.10.1007/s12035-014-8751-424854198Search in Google Scholar

Zhang M.Y., Zheng C.Y., Zou M.M., Zhu J.W., Zhang Y., Wang J., et al.:Lamotrigine attenuates deficits in synaptic plasticity and accumulation of amyloid plaques in APP/PS1 transgenic mice. Neurobiol. Aging., 2014, 35: 2713–2725.10.1016/j.neurobiolaging.2014.06.00925044076Search in Google Scholar

Ziyatdinova S., Gurevicius K., Kutchiashvili N., Bolkvadze T., Nissinen J., Tanila H., Pitkänen A.:Spontaneous epileptiform discharges in a mouse model of Alzheimer’s disease are suppressed by antiepileptic drugs that block sodium channels. Epilepsy Res., 2011, 94: 75–85.10.1016/j.eplepsyres.2011.01.00321300523Search in Google Scholar

eISSN:
2300-0147
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Medicine, Clinical Medicine, other, Neurology, Pharmacology, Toxicology, Pharmacy, Clinical Pharmacy