Requires Authentication

Review: Cromer and DAF: role in health and disease

   | Apr 21, 2020

Cite

McCormick EE, Francis BJ, Gelb AB. A new antibody apparently defining an allele of Goa (abstract). American Association of Blood Banks. Chicago, 1965:59.Search in Google Scholar

Stroup M, McCreary J. Cra, another high frequency blood group factor (abstract). Transfusion 1975; 15:522.Search in Google Scholar

Daniels GL, Tohyama H, Uchikawa M. A possible null phenotype in the Cromer blood group complex. Transfusion 1982;22:362-3.10.1046/j.1537-2995.1982.22583017458.xSearch in Google Scholar

Storry JR, Reid ME. The Cromer blood group system: a review. Immunohematol 2002;18: 95-103.10.21307/immunohematology-2019-524Search in Google Scholar

Banks J, Poole J, Ahrens N, et al. SERF: a new antigen in the Cromer blood group system. Transfus Med 2004;14:313-8.10.1111/j.0958-7578.2004.00519.xSearch in Google Scholar

Hue-Roye K, Reid ME, Powell V, et al. ZENA: a new high prevalence Cromer blood group antigen. Transfusion 2004;44:26A.Search in Google Scholar

Hue-Roye K, Powell VI, Patel G, et al. Novel molecular basis of an Inab phenotype. Immunohematol 2005;21:53-5.10.21307/immunohematology-2019-393Search in Google Scholar

Palacajornsuk P, Hue-Roye K, Nathalang O, et al. Analysis of SERF in Thai blood donors. Immunohematol 2005;21:66-9.10.21307/immunohematology-2019-396Search in Google Scholar

Hoffmann EM. Inhibition of complement by a substance isolated from human erythrocytes. I. Extraction from human erythrocyte stromata. Immunochemistry 1969;6:391-403.10.1016/0019-2791(69)90296-1Search in Google Scholar

Hoffmann EM. Inhibition of complement by a substance isolated from human erythrocytes. II. Studies on the site and mechanism of action. Immunochemistry 1969;6:405-19.10.1016/0019-2791(69)90297-3Search in Google Scholar

Nicholson-Weller A, Burge J, Austen KF. Purification from guinea pig erythrocyte stroma of a decay-accelerating factor for the classical c3 convertase, C4b,2a. J Immunol 1981;127:2035-9.Search in Google Scholar

Nicholson-Weller A, Burge J, Fearon DT, et al. Isolation of a human erythrocyte membrane glycoprotein with decay-accelerating activity for C3 convertases of the complement system. J Immunol 1982;129:184-9.Search in Google Scholar

Davitz MA, Low MG, Nussenzweig V. Release of decay-accelerating factor (DAF) from the cell membrane by phosphatidylinositol-specific phospholipase C (PIPLC). Selective modification of a complement regulatory protein. J Exp Med 1986;163:1150-61.10.1084/jem.163.5.115021880922422313Search in Google Scholar

Medof ME, Walter EI, Roberts WL, et al. Decay accelerating factor of complement is anchored to cells by a C-terminal glycolipid. Biochemistry 1986;25:6740-7.10.1021/bi00370a0032432921Search in Google Scholar

Medof ME, Lublin DM, Holers VM, et al. Cloning and characterization of cDNAs encoding the complete sequence of decay-accelerating factor of human complement. Proc Natl Acad Sci U S A 1987;84:2007-11.10.1073/pnas.84.7.20073045722436222Search in Google Scholar

Caras IW, Davitz MA, Rhee L, et al. Cloning of decay-accelerating factor suggests novel use of splicing to generate two proteins. Nature 1987; 325:545-9.10.1038/325545a0Search in Google Scholar

Telen MJ, Hall SE, Green AM, et al. Identification of human erythrocyte blood group antigens on decay-accelerating factor (DAF) and an erythrocyte phenotype negative for DAF. J Exp Med 1988;167:1993-8.10.1084/jem.167.6.1993Search in Google Scholar

Parsons SF, Spring FA, Merry AH, et al. Evidence that Cromer-related blood group antigens are carried on decay-accelerating factor (DAF) suggests that the Inab phenotype is a novel form of DAF deficiency (abstract). XXth Congress of the International Society of Blood Transfusion. Manchester: British Blood Transfusion Society, 1988:116.Search in Google Scholar

Walport MJ. Complement. First of two parts. N Engl J Med 2001;344:1058-66.Search in Google Scholar

Walport MJ. Complement. Second of two parts. N Engl J Med 2001;344:1140-4.Search in Google Scholar

Dempsey PW, Allison ME, Akkaraju S, et al. C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science 1996;271: 348-50.10.1126/science.271.5247.348Search in Google Scholar

Hourcade D, Post TW, Holers VM, et al. Polymorphisms of the regulators of complement activation gene cluster. Complement Inflamm 1990;7:302-14.10.1159/000463165Search in Google Scholar

Meri S, Morgan BP, Davies A, et al. Human protectin (CD59), an 18,000–20,000 MW complement lysis restricting factor, inhibits C5b-8 catalysed insertion of C9 into lipid bilayers. Immunology 1990;71:1-9.Search in Google Scholar

Lublin DM, Atkinson JP. Decay-accelerating factor: biochemistry, molecular biology, and function. Annu Rev Immunol 1989;7:35-58.10.1146/annurev.iy.07.040189.000343Search in Google Scholar

Moran P, Raab H, Kohr WJ, Caras IW. Glycophospholipid membrane anchor attachment. Molecular analysis of the cleavage/attach-ment site. J Biol Chem 1991;266:1250-7.10.1016/S0021-9258(17)35308-5Search in Google Scholar

Lukacik P, Roversi P, White J, et al. Complement regulation at the molecular level: the structure of decay-accelerating factor. Proc Natl Acad Sci U S A 2004;101:1279-84.10.1073/pnas.0307200101Search in Google Scholar

Fujita T, Inoue T, Ogawa K, et al. The mechanism of action of decay-accelerating factor (DAF). DAF inhibits the assembly of C3 convertases by dissociating C2a and Bb. J Exp Med 1987;166: 1221-8.10.1084/jem.166.5.1221Search in Google Scholar

Medof ME, Kinoshita T, Nussenzweig V. Inhibition of complement activation on the surface of cells after incorporation of decay-accelerating factor (DAF) into their membranes. J Exp Med 1984; 160:1558-78.10.1084/jem.160.5.1558Search in Google Scholar

Takeda J, Miyata T, Kawagoe K, et al. Deficiency of the GPI anchor caused by a somatic mutation of the PIG-A gene in paroxysmal nocturnal hemoglobinuria. Cell 1993;73:703-11.10.1016/0092-8674(93)90250-TSearch in Google Scholar

Holt DS, Botto M, Bygrave AE, et al. Targeted deletion of the CD59 gene causes spontaneous intravascular hemolysis and hemoglobinuria. Blood 2001;98:442-9.10.1182/blood.V98.2.442Search in Google Scholar

Sun X, Funk CD, Deng C, et al. Role of decay-accelerating factor in regulating complement activation on the erythrocyte surface as revealed by gene targeting. Proc Natl Acad Sci U S A 1999;96:628-33.10.1073/pnas.96.2.628Search in Google Scholar

Lin F, Fukuoka Y, Spicer A, et al. Tissue distribution of products of the mouse decay-accelerating factor (DAF) genes. Exploitation of a Daf1 knockout mouse and site-specific monoclonal antibodies. Immunology 2001;104:215-25.10.1046/j.1365-2567.2001.01287.xSearch in Google Scholar

Spicer AP, Seldin MF, Gendler SJ. Molecular cloning and chromosomal localization of the mouse decay-accelerating factor genes. Duplicated genes encode glycosylphosphatidylinositol-anchored and transmembrane forms. J Immunol 1995;155: 3079-91.Search in Google Scholar

Daniels G. Human Blood Groups. 2nd ed. Oxford: Blackwell Science, 2002.10.1002/9780470987018Search in Google Scholar

Lin F, Spencer D, Hatala DA, et al. Decay-accelerating factor deficiency increases susceptibility to dextran sulfate sodium-induced colitis: role for complement in inflammatory bowel disease. J Immunol 2004;172:3836-41.10.4049/jimmunol.172.6.3836Search in Google Scholar

Sogabe H, Nangaku M, Ishibashi Y, et al. Increased susceptibility of decay-accelerating factor deficient mice to anti-glomerular basement membrane glomerulonephritis. J Immunol 2001; 167:2791-7.10.4049/jimmunol.167.5.2791Search in Google Scholar

Lin F, Emancipator SN, Salant DJ, Medof ME. Decay-accelerating factor confers protection against complement-mediated podocyte injury in acute nephrotoxic nephritis. Lab Invest 2002;82:563-9.10.1038/labinvest.3780451Search in Google Scholar

Miwa T, Maldonado MA, Zhou L, et al. Deletion of decay-accelerating factor (CD55) exacerbates autoimmune disease development in MRL/lpr mice. Am J Pathol 2002;161:1077-86.10.1016/S0002-9440(10)64268-XSearch in Google Scholar

Lin F, Kaminski HJ, Conti-Fine BM, et al. Markedly enhanced susceptibility to experimental autoimmune myasthenia gravis in the absence of decay-accelerating factor protection. J Clin Invest 2002;110:1269-74.10.1172/JCI0216086Search in Google Scholar

Holmes CH, Simpson KL, Wainwright SD, et al. Preferential expression of the complement regulatory protein decay accelerating factor at the fetomaternal interface during human pregnancy. J Immunol 1990;144:3099-105.Search in Google Scholar

Xu C, Mao D, Holers VM, et al. A critical role for murine complement regulator crry in fetomaternal tolerance. Science 2000;287:498-501.10.1126/science.287.5452.49810642554Search in Google Scholar

Reid ME, Chandrasekaran V, Sausais L, et al. Disappearance of antibodies to Cromer blood group system antigens during mid pregnancy. Vox Sang 1996;71:48-50.10.1046/j.1423-0410.1996.7110048.xSearch in Google Scholar

Bryant BJ, Weber SL, Indrikovs AJ. Sequestration of anti-Cra in the placenta: serological demonstration by placental elution (abstract). Transfusion 2004;44:117A.Search in Google Scholar

Lawrence DW, Bruyninckx WJ, Louis NA, et al. Antiadhesive role of apical decay-accelerating factor (CD55) in human neutrophil transmigration across mucosal epithelia. J Exp Med 2003;198: 999-1010.10.1084/jem.20030380Search in Google Scholar

Verbakel CA, van Duikeren S, de Bruin RW, et al. Human decay-accelerating factor expressed on rat hearts inhibits leukocyte adhesion. Transpl Int 2003;16:168-72.10.1111/j.1432-2277.2003.tb00281.xSearch in Google Scholar

Davis LS, Patel SS, Atkinson JP, Lipsky PE. Decay-accelerating factor functions as a signal transducing molecule for human T cells. J Immunol 1988;141:2246-52.Search in Google Scholar

Shenoy-Scaria AM, Kwong J, Fujita T, et al. Signal transduction through decay-accelerating factor. Interaction of glycosyl-phosphatidylinositol anchor and protein tyrosine kinases p56lck and p59fyn 1. J Immunol 1992;149:3535-41.Search in Google Scholar

Hamann J, Vogel B, van Schijndel GM, van Lier RA. The seven-span transmembrane receptor CD97 has a cellular ligand (CD55, DAF). J Exp Med 1996; 184:1185-9.10.1084/jem.184.3.1185Search in Google Scholar

Visser L, de Vos AF, Hamann J, et al. Expression of the EGF-TM7 receptor CD97 and its ligand CD55 (DAF) in multiple sclerosis. J Neuroimmunol 2002; 132:156-63.10.1016/S0165-5728(02)00306-5Search in Google Scholar

Moran P, Beasley H, Gorrell A, et al. Human recombinant soluble decay accelerating factor inhibits complement activation in vitro and in vivo. J Immunol 1992;149:1736-43.Search in Google Scholar

McCurry KR, Kooyman DL, Alvarado CG, et al. Human complement regulatory proteins protect swine-to-primate cardiac xenografts from humoral injury. Nat Med 1995;1:423-7.10.1038/nm0595-423Search in Google Scholar

Spitzer D, Unsinger J, Bessler M, Atkinson JP. ScFv-mediated in vivo targeting of DAF to erythrocytes inhibits lysis by complement. Mol Immunol 2004;40:911-9.10.1016/j.molimm.2003.10.017Search in Google Scholar

Cooper DK. Clinical xenotransplantion—how close are we? Lancet 2003;362:557-9.10.1016/S0140-6736(03)14118-9Search in Google Scholar

Waterworth PD, Dunning J, Tolan M, et al. Life-supporting pig-to-baboon heart xenotransplantation. J Heart Lung Transplant 1998;17:1201-7.Search in Google Scholar

Ramirez P, Chavez R, Majado M, et al. Life-supporting human complement regulator decay-accelerating factor transgenic pig liver xenograft maintains the metabolic function and coagulation in the nonhuman primate for up to 8 days. Transplantation 2000;70:989-98.10.1097/00007890-200010150-00001Search in Google Scholar

Vial CM, Ostlie DJ, Bhatti FN, et al. Life supporting function for over one month of a transgenic porcine heart in a baboon. J Heart Lung Transplant 2000;19:224-9.10.1016/S1053-2498(99)00099-6Search in Google Scholar

Ghanekar A, Lajoie G, Luo Y, et al. Improvement in rejection of human decay accelerating factor transgenic pig-to-primate renal xenografts with administration of rabbit antithymocyte serum. Transplantation 2002;74:28-35.10.1097/00007890-200207150-0000612134095Search in Google Scholar

Phelps CJ, Koike C, Vaught TD, et al. Production of alpha 1,3-galactosyltransferase-deficient pigs. Science 2003;299:411-4.10.1126/science.1078942315475912493821Search in Google Scholar

Brenner P, Schmoeckel M, Wimmer C, et al. Mean xenograft survival of 14.6 days in a small group of hDAF-transgenic pig hearts transplanted ortho-topically into baboons. Transplant Proc 2005; 37:472-6.10.1016/j.transproceed.2004.12.24115808680Search in Google Scholar

Bergelson JM, Chan M, Solomon KR, et al. Decay-accelerating factor (CD55), a glycosylphosphatidylinositol-anchored complement regulatory protein, is a receptor for several echoviruses. Proc Natl Acad Sci U S A 1994;91:6245-8.10.1073/pnas.91.13.6245441757517044Search in Google Scholar

Ward T, Pipkin PA, Clarkson NA, et al. Decay-accelerating factor CD55 is identified as the receptor for echovirus 7 using CELICS, a rapid immuno-focal cloning method. Embo J 1994;13: 5070-4.10.1002/j.1460-2075.1994.tb06836.x3954537525274Search in Google Scholar

Lea S. Interactions of CD55 with non-complement ligands. Biochem Soc Trans 2002;30:1014-9.10.1042/bst030101412440964Search in Google Scholar

Stuart AD, Eustace HE, McKee TA, Brown TD. A novel cell entry pathway for a DAF-using human enterovirus is dependent on lipid rafts. J Virol 2002;76:9307-22.10.1128/JVI.76.18.9307-9322.200213647112186914Search in Google Scholar

Shieh JT, Bergelson JM. Interaction with decay-accelerating factor facilitates coxsackievirus B infection of polarized epithelial cells. J Virol 2002;76:9474-80.10.1128/JVI.76.18.9474-9480.2002Search in Google Scholar

Milstone AM, Petrella J, Sanchez MD, et al. Interaction with coxsackievirus and adenovirus receptor, but not with decay-accelerating factor (DAF), induces A-particle formation in a DAF-binding coxsackievirus B3 isolate. J Virol 2005; 79:655-60.10.1128/JVI.79.1.655-660.200553872915596863Search in Google Scholar

Nowicki B, Selvarangan R, Nowicki S. Family of Escherichia coli Dr adhesins: decay-accelerating factor receptor recognition and invasiveness. J Infect Dis 2001;183(Suppl)1:S24-7.10.1086/31884611171008Search in Google Scholar

Nowicki B, Hart A, Coyne KE, et al. Short consensus repeat-3 domain of recombinant decay-accelerating factor is recognized by Escherichia coli recombinant Dr adhesin in a model of a cell-cell interaction. J Exp Med 1993;178:2115-21.10.1084/jem.178.6.211521912837504058Search in Google Scholar

Selvarangan R, Goluszko P, Popov V, et al. Role of decay-accelerating factor domains and anchorage in internalization of Dr-fimbriated Escherichia coli. Infect Immun 2000;68:1391-9.10.1128/IAI.68.3.1391-1399.20009729310678952Search in Google Scholar

Peiffer I, Servin AL, Bernet-Camard MF. Piracy of decay-accelerating factor (CD55) signal transduction by the diffusely adhering strain Escherichia coli C1845 promotes cytoskeletal F-actin rearrangements in cultured human intestinal INT407 cells. Infect Immun 1998;66:4036-42.10.1128/IAI.66.9.4036-4042.19981084829712744Search in Google Scholar

Tieng V, Le Bouguenec C, du Merle L, et al. Binding of Escherichia coli adhesin AfaE to CD55 triggers cell-surface expression of the MHC class I-related molecule MICA. Proc Natl Acad Sci U S A 2002; 99:2977-82.10.1073/pnas.03266809912245811830641Search in Google Scholar

Betis F, Brest P, Hofman V, et al. The Afa/Dr adhesins of diffusely adhering Escherichia coli stimulate interleukin-8 secretion, activate mitogen-activated protein kinases, and promote polymorphonuclear transepithelial migration in T84 polarized epithelial cells. Infect Immun 2003;71:1068-74.10.1128/IAI.71.3.1068-1074.200314885212595416Search in Google Scholar

eISSN:
1930-3955
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, Laboratory Medicine