Cite

J. Steinbach, Safety Assessment for Chemical Processes. Weinheim, Germany: Wiley-VCH Verlag GmbH, 1998. Search in Google Scholar

M. Meeks, “An analog computer study of polymerization rates in vinyl chloride suspensions,” Polym. Eng. Sci., no. 2, pp. 141–151, 1969. Search in Google Scholar

A. Zogg, F. Stoessel, U. Fischer, and K. Hungerbühler, “Isothermal reaction calorimetry as a tool for kinetic analysis,” Thermochim. Acta, vol. 419, no. 1–2, pp. 1–17, Sep. 2004. Search in Google Scholar

J. Daut and G. Elzinga, “Heat Production of Quiescent Ventricular Trabeculae Isolated from Guinea-Pig Heart,” J. Physiol., vol. 398, no. 1988, pp. 259–275, 1988. Search in Google Scholar

K. Lee, “A new technique for the simultaneous recording of oxygen consumption and contraction of muscle: the effect of ouabain on cat papillary muscle,” J. Pharmacol. Exp. Ther., pp. 304–312, 1953. Search in Google Scholar

J.-C. Han, A. J. Taberner, R. S. Kirton, P. M. F. Nielsen, R. Archer, N. Kim, and D. S. Loiselle, “Radius-dependent decline of performance in isolated cardiac muscle does not reflect inadequacy of diffusive oxygen supply,” Am. J. Physiol. - Hear. Circ. Physiol., pp. 1222–1236, 2011. Search in Google Scholar

J.-C. Han, A. J. Taberner, R. S. Kirton, P. M. F. Nielsen, N. P. Smith, and D. S. Loiselle, “A unique micromechanocalorimeter for simultaneous measurement of heat rate and force production of cardiac trabeculae carnae,” J. Appl. Physiol., vol. 107, pp. 946–951, 2009. Search in Google Scholar

M. Zieren, R. Willnauer, and J. Köhler, “Flow-through chip calorimeter based on BiSb/Sb-thin-film thermopiles with a thermopower of 64 mV/K,” Micro Total Anal. Syst. 2000, no. 100, pp. 71–74, 2000. Search in Google Scholar

A. W. van Herwaarden, P. M. Sarro, J. W. Gardner, and P. Bataillard, “Liquid and gas micro-calorimeters for (bio)chemical measurements,” Sensors Actuators A Phys., vol. 43, no. 1–3, pp. 24– 30, May 1994. Search in Google Scholar

V. Baier, A. Ihring, E. Kessler, J. Lerchner, and G. Wolf, “Highly sensitive thermopile heat power sensor for micro-fluid calorimetry of biochemical processes,” Sensors Actuators A Phys., vol. 123– 124, pp. 354–359, Sep. 2005. Search in Google Scholar

J. Lerchner, a. Wolf, G. Wolf, V. Baier, E. Kessler, M. Nietzsch, and M. Krügel, “A new micro-fluid chip calorimeter for biochemical applications,” Thermochim. Acta, vol. 445, no. 2, pp. 144–150, Jun. 2006. Search in Google Scholar

A. J. Taberner, I. W. Hunter, R. S. Kirton, P. M. F. Nielsen, and D. S. Loiselle, “Characterization of a flow-through microcalorimeter for measuring the heat production of cardiac trabeculae,” Rev. Sci. Instrum., vol. 76, no. 10, pp. 104902–7, Oct. 2005. Search in Google Scholar

J. H. Lienhard IV and J. H. Lienhard V, A heat transfer textbook, 4th ed., vol. 27, no. 4. Cambridge, MA: Phlogiston Press, 2011. Search in Google Scholar

M. C. Foote, E. W. Jones, and T. Caillat, “Uncooled thermopile infrared detector linear arrays with detectivity greater than 109 cmHz1/2/W,” IEEE Trans. Electron Devices, vol. 45, no. 9, pp. 1896–1902, 1998. Search in Google Scholar

B. Yang, H. Ahuja, and T. Tran, “Review Article: Thermoelectric Technology Assessment: Application to Air Conditioning and Refrigeration,” HVAC&R Res., no. January 2014, pp. 37–41, 2008. Search in Google Scholar

H. Kraus, “Superconductive bolometers and calorimeters,” Supercond. Sci. Technol., vol. 9, no. 10, pp. 827–842, Oct. 1996. Search in Google Scholar

W. Franzen, “Nonisothermal Superconducting Bolometer: Theory of Operation,” J. Opt. Soc. Am., vol. 53, no. 5, p. 596, May 1963.Search in Google Scholar

eISSN:
1178-5608
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Engineering, Introductions and Overviews, other