Open Access

Monitoring of the lung fluid movement and estimation of lung area using Electrical Impedance Tomography: A Simulation Study


Cite

Patients suffering from the acute respiratory distress syndrome (ARDS) requires thoracic electrical impedance tomography (EIT) for the monitoring their conditions ranging from dynamic shifting of body fluids to lung aeration right at the bedside. More objectively, EIT-derived numeric parameters would help the physician to evaluate the state of the lung. Thus, here we have performed a Finite Element Method based simulation study for monitoring the condition of lungs and heart of ARDS patients. Therefore, a finite element method (FEM)- model of a human thorax in 3 dimensional platform of FEM Multiphysics software is created and is tested with new ventilation indices regarding their ability to quantitatively describe structural changes in the lung due to the gravitationally dependent lung collapse. Additionally, analysis is made to find the electrode pairs capable of separating the lung and heart activity when a particular amount of constant current is injected through them are also carried out. Finally, a real time of the EIT system using 16 Ag-AgCl electrodes were developed for real time imaging of the human thorax. The data were collected using the adjacent current injection technique and are plotted using FEM Multiphysics software. The reconstructed FEM images using the forward solver of EIT shows the approximate area of the thorax (lungs, heart etc.) under observation.

eISSN:
1178-5608
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Engineering, Introductions and Overviews, other