Cite

R. A. Williams and M. S. Beck, Process tomography: principles, techniques, and applications. Butterworth-Heinemann Ltd, 1995, p. 624. Search in Google Scholar

M. Tajjudin, “Fan Beam Optical Tomography,” Master Thesis, Universiti Teknologi Malaysia, 2005. Search in Google Scholar

I. Ismail, J. C. Gamio, S. F. A. Bukhari, and W. Q. Yang, “Tomography for multi-phase flow measurement in the oil industry,” Flow Measurement and Instrumentation, vol. 16, pp. 145-155, 2005.10.1016/j.flowmeasinst.2005.02.017 Search in Google Scholar

M. A. Bennett, R. M. West, S. P. Luke, and R. A. Williams, “The investigation of bubble column and foam processes using electrical capacitance tomography,” Minerals Engineering, vol. 15, pp. 225-234, 2002.10.1016/S0892-6875(02)00005-5 Search in Google Scholar

R. Abdul Rahim, Optical Tomography: Principles, Techniques, and Applications. Johor Bahru: Penerbit UTM, 2011. Search in Google Scholar

“Process Tomography Web Page,” University of Bergen, 1997. . Search in Google Scholar

S. Z. Mohd Muji, R. Abdul Rahim, M. H. Fazalul Rahiman, Z. Zakaria, E. J. Mohamad, and M. S. Karis, “The Linearity of Optical Tomography: Sensor Model and Experimental Verification,” Sensors & Transducers, vol. 132, no. 9, pp. 40-46, 2011. Search in Google Scholar

T. Froystein, “Gamma-ray Flow Imaging,” Proc. ECAPT 1993, Karlsruhe, Germany, pp. 213216. Search in Google Scholar

R. Abdul Rahim, “A Tomography Imaging System for Pneumatic Conveyors using Optical Fibers,” Phd Thesis, Sheffield Hallam University, 1996. Search in Google Scholar

S. Ibrahim, “Measurement of Gas Bubbles in a Vertical Water Column using Optical Tomography.,” Phd Thesis, Sheffield Hallam University, 2000. Search in Google Scholar

M. A. Hashim, “Optical Process Tomography For Measurement of Bubbles,” Degree Thesis, Universiti Teknologi Malaysia, 2011. Search in Google Scholar

E. Schleicher, M. J. Silva, S. Thiele, A. Li, E. Wollrab, and U. Hampel, “Design of an optical tomograph for the investigation of single- and two-phase pipe,” Meas. Sci. Technol, vol. 94006, no. 19, p. 14, 2008. Search in Google Scholar

C. Yan, J. Zhong, Y. Liao, S. Lai, M. Zhang, and D. Gao, “Design of an applied optical fiber process tomography system,” Sensors And Actuators, vol. 104, pp. 324-331, 2005.10.1016/j.snb.2004.05.027 Search in Google Scholar

S. Ibrahim, R. G. Green, K. Dutton, K. Evans, R. A. Rahim, and A. Goude, “Optical sensor configurations for process tomography,” Meas. Sci. Technol, vol. 10, pp. 1079-1086, 1999. Search in Google Scholar

C. K. San, “Real Time Image Reconstruction For Fan Beam Optical Tomography System.,” Master Thesis, Universiti Teknologi Malaysia, 2002. Search in Google Scholar

R. A. Rahim, L. C. Leong, K. S. Chan, S. Sulaiman, and J. F. Pang, “Tomographic Imaging: Multiple Fan Beam Projection Technique Using Optical Fibre Sensors,” Computers, Communications, & Signal Processing with Special Track on Biomedical Engineering, 2005. CCSP 2005. 1st International Conference on 14-16 Nov. 2005, pp. 115-119, 2005. Search in Google Scholar

R. A. Rahim, P. J. Fea, C. K. San, and M. H. Fazalul Rahiman, “Optical Tomography: Infrared Tomography Sensor Configuration Using 4 Parallel Beam Projections,” Sensors & Transducers, vol. 72, no. 10, pp. 761-768, 2006. Search in Google Scholar

M. A. Mohd Yunus, “Imaging Of Solid Flow In a Gravity Flow Rig Using Infra-Red Tomography,” Master Thesis, Universiti Teknologi Malaysia, 2005. Search in Google Scholar

M. S. Saad, “Concentration and Velocity Measurement of Flowing Objects Using Optical and Ultrasonic Tomography,” Master Thesis, Universiti Teknologi Malaysia, 2007. Search in Google Scholar

L. L. Chen, “Implementation of Multiple Fan Beam Projection Technique in Optical Fibre Process Tomography,” Master Thesis, Universiti Teknologi Malaysia, 2005. Search in Google Scholar

S. Ibrahim, R. G. Green, K. Dutton, and R. Abdul Rahim, “Lensed optical fiber sensors for on-line measurement of flow.,” ISA transactions, vol. 41, no. 1, pp. 13-8, Jan. 2002.10.1016/S0019-0578(07)60198-0 Search in Google Scholar

S. Z. Mohd Muji, M. Morsin, and R. Abdul Rahim, “Criteria for sensor selection in optical tomography,” in 2009 IEEE Symposium on Industrial Electronics & Applications, 2009, no. Isiea, pp. 510-514.10.1109/ISIEA.2009.5356426 Search in Google Scholar

R. A. Rahim, K. S. Chan, J. F. Pang, and L. C. Leong, “A Hardware Development for Optical Tomography System using Switch Mode Fan Beam Projection,” Sensors and Actuators A: Physical, vol. 120, no. 1, pp. 277-290, Apr. 2005.10.1016/j.sna.2004.11.038 Search in Google Scholar

J. Park and S. Mackay, Data Acquisition for Instrumentation and control Systems. Newnes, 2003. Search in Google Scholar

M. M. Elmajri, “A Tomography Imaging System Using Two Types of Sensor,” Master Thesis, Universiti Teknologi Malaysia, 2008. Search in Google Scholar

T. Dyakowski, L. F. C. Jeanmeure, and A. J. Jaworski, “Applications of electrical tomography for gas – solids and liquid – solids flows — a review,” Powder Technology, vol. 112, pp. 174-192, 2000.10.1016/S0032-5910(00)00292-8 Search in Google Scholar

P. Dugdale, R. G. Green, A. J. Hartley, R. Jackson, and J. Landauro, “Optical sensors for process tomography,” ECAPT 1992, Process Tomography: A Strategy for Industrial Exploitation, European Concerted Action on Process Tomography, Manchester, United Kingdom. Search in Google Scholar

R. G. Green, R. Abdul Rahim, K. Evans, F. J. Dickin, B. D. Naylor, and T. P. Pridmore, “Concentration profiles in a gravity chute conveyor by optical tomography measurement,” Powder Technology, vol. 95, no. 1, pp. 49-54, Jan. 1998.10.1016/S0032-5910(97)03315-9 Search in Google Scholar

E. J. Mohamad, “Flame Imaging using Laser Based Transmission Tomography,” Master Thesis, Universiti Teknologi Malaysia, 2005. Search in Google Scholar

P. Jon Fea, “Real-Time Velocity And Mass Flow Rate Measurement Using Optical Tomography.,” Master Thesis, Universiti Teknologi Malaysia, 2004. Search in Google Scholar

R. A. Rahim, C. K. Thiam, M. Hafiz, and F. Rahiman, “An Optical Tomography System Using a Digital Signal Processor,” Sensors, vol. 8, pp. 2082-2103, 2008. Search in Google Scholar

Y. Zheng and Q. Liu, “Investigation on concentration distribution and mass flow rate measurement for gravity chute conveyor by optical tomography system,” Measurement, vol. 39, pp. 643-654, 2006.10.1016/j.measurement.2006.01.004 Search in Google Scholar

M. R. Rzasa and A. Plaskowski, “Application of optical tomography for measurements of aeration parameters in large water tanks,” Meas. Sci. Technol, no. 14, pp. 199-204, 2003.10.1088/0957-0233/14/2/307 Search in Google Scholar

M. . Beck, R. . Green, and “ R. Thorn, “Non-intrusive Measurement of Solid Mass Flow in pneumatic conveying,” J.Phys. E:Sci.Instrum., vol. 20, no. 7, pp. 835-840.10.1088/0022-3735/20/7/002 Search in Google Scholar

M. S. Beck and A. Plaskowski, “Cross Correlation Flowmeters: Their Design and Application,” IOP Publishing Ltd, p. 240, 1987. Search in Google Scholar

M. F. Rahmat, “Instrumentation of Particle Conveying Using Electrical Charge Tomography,” Phd Thesis, Sheffield Hallam University, 1996. Search in Google Scholar

M. H. Fazalul Rahiman, “Real Time Velocity Profile Generation of Powder Conveying Using Electrical Charge Tomography,” Master Thesis, Universiti Teknologi Malaysia, 2002. Search in Google Scholar

G. C. Xie, A. L. Stott, S. M. Huang, A. Plaskowski, and M. S. Beck, “Mass-flow Measurement Of Solids Using Electrodynamics and Capacitance Transducers.,” J. Phys. E:Sci. Instrum, vol. 22, no. 9, pp. 712-719, 1989.10.1088/0022-3735/22/9/007 Search in Google Scholar

R. A. Rahim, K. T. Chiam, M. H. F. Rahiman, and “ P. Jayasuman, “Velocity Profile Measurement Using Digital Signal Processor-Based Optical Tomography System,” IEEE Sensors Journal, vol. 9, no. 9, pp. 1076-1083, 2009. Search in Google Scholar

R. Abdul Rahim, P. J. Fea, and C. K. San, “Optical tomography: real-time velocity profile measurement using pixel-to-pixel and sensor-to-sensor method,” Optical Engineering, vol. 45, no. 3, p. 033604, 2006. Search in Google Scholar

S.Ibrahim, R.G.Green, K.Evans, K. Dutton, and R. A. Rahim, “Optical Tomography for process measurement and control,” in Proc. Control UKACC Int. Conf Sept 4-7, 2000,, pp. 188190. Search in Google Scholar

R. Abdul Rahim, Y. Mohd Yunos, M. H. Fazalul Rahiman, S. Z. Mohd Muji, C. Kok Thiam, and H. Abdul Rahim, “Optical tomography: Velocity profile measurement using orthogonal and rectilinear arrangements,” Flow Measurement and Instrumentation, vol. 23, no. 1, pp. 49-55, Mar. 2012.10.1016/j.flowmeasinst.2011.10.006 Search in Google Scholar

C. Tan and F. Dong, “Cross Correlation Velocity of Oil-water Two-Phase Flow by a DualPlane Electrical Resistance Tomography System,” IEEE, 2010.10.1109/IMTC.2010.5488276 Search in Google Scholar

W.L. Yaw, “Real-Time Mass Flow Rate Measurement for Bulk Solid Flow Using Electrodynamic Tomography System,” Master Thesis, Universiti Teknologi Malaysia, 2007. Search in Google Scholar

C. Qiu, B. S. Hoyle, and F. J. W. Podd, “Engineering and application of a dual-modality process tomography system,” Flow Measurement and Instrumentation, vol. 18, pp. 247-254, 2007.10.1016/j.flowmeasinst.2007.07.008 Search in Google Scholar

M.R.Rzasa, “The measuring method for tests of horizontal two-phase gas–liquid flows, using optical and capacitance tomography.,” Nuclear Engineering and Design,, vol. 239, no. 4, pp. 699-707, 2009.10.1016/j.nucengdes.2008.12.020 Search in Google Scholar

R. Mohd Zain, “The Development Of A Dual Modality Tomography (DMT) System Using Optical And Capacitance Sensors For Solid/Gas Flow Measurement,” Master Thesis, Universiti Teknologi Malaysia, 2009. Search in Google Scholar

S. Z. M. Muji et al., “Optical Tomography: A Review On Sensor Array, Projection Arrangement and Image Reconstruction Algorithm,” International Journal of Innovative Computing, Information and Control, vol. 7, no. 7, pp. 1-17, 2011. Search in Google Scholar

N. Mohammad Rohi, “Dual modality tomography system using optical and electrodynamic sensors to obtain tomographic images of solid flow,” Master Thesis, Universiti Teknologi Malaysia, 2009. Search in Google Scholar

B. A. Cattle and R. M. West, “A two-dimensional dual-modality tomography technique for a radioactive waste separation process,” Annals of Nuclear Energy, vol. 33, pp. 1236-1244, 2006. Search in Google Scholar

L. Bilro, S. A. Prats, J. L. Pinto, J. J. Keizer, and R. N. Nogueira, “Design and performance assessment of a plastic optical fibre-based sensor for measuring water turbidity,” Measurement Science and Technology, vol. 21, no. 10, p. 107001, Oct. 2010. Search in Google Scholar

A. F. B. Omar and M. Z. B. Matjafri, “Turbidimeter design and analysis: A review on optical fiber sensors for the measurement of water turbidity,” Sensors, vol. 9, no. 10, pp. 83118335, Jan. 2009. Search in Google Scholar

I. Niskanen, J. Räty, and K.-E. Peiponen, “A multifunction spectrophotometer for measurement of optical properties of transparent and turbid liquids,” Measurement Science and Technology, vol. 17, no. 12, p. N87-N91, Dec. 2006.10.1088/0957-0233/17/12/N03 Search in Google Scholar

P. Aiestaran, J. Arrue, and J. Zubia, “Design of a Sensor Based on Plastic Optical Fibre (POF) to Measure Fluid Flow and Turbidity,” Sensors, vol. 9, pp. 3790-3800, 2009. Search in Google Scholar

M. Borecki, “Intelligent Fiber Optic Sensor for Estimating the Concentration of a MixtureDesign and Working Principle,” Sensors, pp. 384-399, 2007.10.3390/s7030384 Search in Google Scholar

P.Comon, “Independent component analysis: A new concept?,” Signal Process, vol. 36, no. 3, pp. 11-20, 1994.10.1016/0165-1684(94)90029-9 Search in Google Scholar

C. Jutten and J. Herault, “Blind separation of sources, Part 1: An adaptive algorithm based on neuromimetic architecture,” Signal Processing, vol. 24, pp. 1-10, 1991.10.1016/0165-1684(91)90079-X Search in Google Scholar

N. Delfosse and P. Loubaton, “Adaptive Separation of Independent Sources: A Deflation Approach,” Signal Processing, vol. 45, pp. 59-83, 1995.10.1016/0165-1684(95)00042-C Search in Google Scholar

C. J. James and C. W. Hesse, “Independent component analysis for biomedical signals (Topical review),” Pysical. Meas., vol. 26, no. 1, p. R15-R39, 2005.10.1088/0967-3334/26/1/R0215742873 Search in Google Scholar

N. Katsumata and Y. Matsuyama, “Database retrieval for similar images using ICA and PCA bases,” Eng. Appl. Artif. Intell., vol. 18, no. 6, pp. 705-717, 2005.10.1016/j.engappai.2005.01.002 Search in Google Scholar

P. C. Yuen and J. H. Lai, “Face representation using indepedent component analysis,” Pattern Recognit., vol. 35, no. 6, pp. 1247-1257, 2002. Search in Google Scholar

Y. Xu, H. Wang, Z. Cui, F. Dong, and Y. Yan, “Separation of Gas-Liquid Two-Phase Flow Through Independent Component Analysis,” IEEE Instrumentation And Measurement, vol. 59, no. 5, pp. 1294-1302, 2010. Search in Google Scholar

G. Wang, Q. Ding, and Z. Hou, “Independent component analysis and its applications in signal processing for analytical chemistry,” Trends in Analytical Chemistry, vol. 27, no. 4, pp. 368-376, 2008.10.1016/j.trac.2008.01.009 Search in Google Scholar

F. Esposito et al., “Spatial independent component analysisof fuctional MRI time-series: To what extent do result depend on algorithm used?,” Hum. Brain Mapp., vol. 16, no. 3, pp. 146157, 2002.Search in Google Scholar

eISSN:
1178-5608
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Engineering, Introductions and Overviews, other