Open Access

DESIGN AND DEVELOPMENT OF 3D PRINTED MYOELECTRIC ROBOTIC EXOSKELETON FOR HAND REHABILITATION


Cite

Aabdallah, I.B., Bouteraa, Y. and Rekik, C. (2016). ‘Design of smart robot for wrist rehabilitation’. International journal of smart sensing and intelligent systems. vol. 9, no. 2.10.21307/ijssis-2017-906 Search in Google Scholar

Mehdi, H., & Boubaker, O. (2012). ‘Robot-assisted therapy: design, control and optimization’. International Journal on Smart Sensing and Intelligent Systems, 5(4), 1044-1062.10.21307/ijssis-2017-522 Search in Google Scholar

Orihuela-Espina, F., Roldán, G. F., Sánchez-Villavicencio, I., Palafox, L., Leder, R., Sucar, L. E., & Hernández-Franco, J. (2016). ‘Robot training for hand motor recovery in subacute stroke patients: A randomized controlled trial’. Journal of Hand Therapy, 29(1), 51-57.10.1016/j.jht.2015.11.00626847320 Search in Google Scholar

Y. Bouteraa and I. Ben Abdallah, Exoskeleton robots for upper-limb rehabilitation, 2016 13th International Multi-Conference on Systems, Signals & Devices (SSD), Leipzig, pp 1-6.10.1109/SSD.2016.7473769 Search in Google Scholar

Mazzoleni, S., Sale, P., Franceschini, M., Bigazzi, S., Carrozza, M.C., Dario, P. and Posteraro, F. (2013). ‘Effects of proximal and distal robot-assisted upper limb rehabilitation on chronic stroke recovery’. NeuroRehabilitation, 33 (1) 33–39.10.3233/NRE-13092523949024 Search in Google Scholar

Gerloff, C., Corwell, B., Chen, R., Hallett, M. and Cohen, L.G. (1998), ‘The role of the human motor cortex in the control of complex and simple finger movement sequences’. Brain, 121(9), 1695-1709.10.1093/brain/121.9.16959762958 Search in Google Scholar

Heo, P., Gu, G. M., Lee, S. J., Rhee, K., & Kim, J. (2012). ‘Current hand exoskeleton technologies for rehabilitation and assistive engineering’. International Journal of Precision Engineering and Manufacturing, 13(5), 807-824.10.1007/s12541-012-0107-2 Search in Google Scholar

Bos, R. A., Haarman, C. J., Stortelder, T., Nizamis, K., Herder, J. L., Stienen, A. H., & Plettenburg, D. H. (2016). ‘A structured overview of trends and technologies used in dynamic hand orthoses’. Journal of NeuroEngineering and Rehabilitation, 13(1), 62.10.1186/s12984-016-0168-z492833127357107 Search in Google Scholar

Cesqui, B., Tropea, P., Micera, S., & Krebs, H. I. (2013). ‘EMG-based pattern recognition approach in post stroke robot-aided rehabilitation: a feasibility study’. Journal of neuroengineering and rehabilitation, 10(1), 1.10.1186/1743-0003-10-75372953723855907 Search in Google Scholar

Song, R., Tong, K. Y., Hu, X., & Zhou, W. (2013). ‘Myoelectrically controlled wrist robot for stroke rehabilitation’. Journal of neuroengineering and rehabilitation, 10(1), 1.10.1186/1743-0003-10-52368557023758925 Search in Google Scholar

Ryait, H. S., Arora, A. S., & Agarwal, R. (2009). ‘Study of issues in the development of surface EMG controlled human hand’. Journal of Materials Science: Materials in Medicine, 20(1), 107-114. Search in Google Scholar

Lee, S. W., Wilson, K. M., Lock, B. A., & Kamper, D. G. (2011). ‘Subject-specific myoelectric pattern classification of functional hand movements for stroke survivors’. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 19(5), 558-566.10.1109/TNSRE.2010.2079334401015520876030 Search in Google Scholar

Ho, N. S. K., Tong, K. Y., Hu, X. L., Fung, K. L., Wei, X. J., Rong, W., & Susanto, E. A. (2011, June). ‘An EMG-driven exoskeleton hand robotic training device on chronic stroke subjects: task training system for stroke rehabilitation’. In Proceedings of the 2011 IEEE international conference on rehabilitation robotics (pp. 1-5).10.1109/ICORR.2011.597534022275545 Search in Google Scholar

Kiguchi, K. (2007, June). ‘A study on emg-based human motion prediction for power assist exoskeletons’. In Proceedings of the 2007 International Symposium on Computational Intelligence in Robotics and Automation (pp. 190-195).10.1109/CIRA.2007.382917 Search in Google Scholar

Masia, L., Krebs, H. I., Cappa, P., & Hogan, N. (2007, June). ‘Design, characterization, and impedance limits of a hand robot’. In Proceedings of the 2007 IEEE 10th International Conference on Rehabilitation Robotics (pp. 1085-1089).10.1109/ICORR.2007.4428558 Search in Google Scholar

Takahashi, C. D., Der-Yeghiaian, L., Le, V., Motiwala, R. R., & Cramer, S. C. (2008). ‘Robot-based hand motor therapy after stroke’. Brain, 131(2), 425-437.10.1093/brain/awm31118156154 Search in Google Scholar

Kawasaki, H., Ito, S., Ishigure, Y., Nishimoto, Y., Aoki, T., Mouri, T.& Abe, M. (2007, June). ‘Development of a hand motion assist robot for rehabilitation therapy by patient selfmotion control’. In Proceedings of the 2007 IEEE 10th International Conference on Rehabilitation Robotics (pp. 234-240).10.1109/ICORR.2007.4428432 Search in Google Scholar

Hasegawa, Y., Mikami, Y., Watanabe, K., Firouzimehr, Z., & Sankai, Y. (2008, September). ‘Wearable handling support system for paralyzed patient’. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 741-746).10.1109/IROS.2008.4651199 Search in Google Scholar

Lambercy, O., Dovat, L., Yun, H., Wee, S. K., Kuah, C., Chua, K.& Burdet, E. (2009, June). ‘Rehabilitation of grasping and forearm pronation/supination with the Haptic Knob’. In Proceedings of the IEEE International Conference on Rehabilitation Robotics (pp. 22-27).10.1109/ICORR.2009.5209520 Search in Google Scholar

Dovat, L., Lambercy, O., Gassert, R., Maeder, T., Milner, T., Teo C. and Burdet, E. (2008), ‘HandCARE: A cable-actuated rehabilitation system to train hand function after stroke’, IEEE Transaction in Neural Systems and Rehabilitation Engineering, 16(6), pp. 582–591.10.1109/TNSRE.2008.201034719144590 Search in Google Scholar

Felipe, J., Pereyra, A. and Castillo-Castaneda, E. (2016), ‘Design of a Reconfigurable Robotic System for Flexoextension Fitted to Hand Fingers Size’, Applied Bionics and Biomechanics, vol. 2016, Article ID 1712831, 10 pages.10.1155/2016/1712831497626127524880 Search in Google Scholar

Schabowsky, C. N., Godfrey, S. B., Holley, R. J., & Lum, P. S. (2010). ‘Development and pilot testing of HEXORR: hand EXOskeleton rehabilitation robot’. Journal of neuroengineering and rehabilitation, 7(1), 1.10.1186/1743-0003-7-36292029020667083 Search in Google Scholar

Borboni, A., Mor, M. and Faglia, R. (2016), ‘Gloreha-Hand Robotic Rehabilitation: Design, Mechanical Model, and Experiments’ J. Dyn. Sys., Meas., Control 138(11), 111003.10.1115/1.4033831 Search in Google Scholar

The Amadeo® System, Tyromotion. [Online]. Available: http://www.tyromotion.com/en/products/amadeo/. Search in Google Scholar

Maestra Hand and Wrist CPM, Sammons Preston. [Online]. Available: http://www.sammonspreston.com/app.aspx?cmd=get_product&id=91378. Search in Google Scholar

Heo, P., Gu, G. M., Lee, S. J., Rhee, K., & Kim, J. (2012). ‘Current hand exoskeleton technologies for rehabilitation and assistive engineering’. International Journal of Precision Engineering and Manufacturing, 13(5), 807-824.10.1007/s12541-012-0107-2 Search in Google Scholar

Aguilar-Pereyra, J.F. and Castillo-Castaneda, E. (2016) ‘Design of a Reconfigurable Robotic System for Flexoextension Fitted to Hand Fingers Size’. Applied Bionics and Biomechanics, vol. 2016, Article ID 1712831, 10 pages.10.1155/2016/1712831497626127524880 Search in Google Scholar

Negi, S., Dhiman, S., & Kumar Sharma, R. (2014). ‘Basics and applications of rapid prototyping medical models’. Rapid Prototyping Journal, 20(3), 256-267.10.1108/RPJ-07-2012-0065 Search in Google Scholar

Hieu, L. C., Sloten, J. V., Hung, L. T., Khanh, L., Soe, S., Zlatov, N., ...& Trung, P. D. (2010, September). ‘Medical reverse engineering applications and methods’. In 2ND International Conference on Innovations, Recent Trends and Challenges in Mechatronics, Mechanical Engineering and New High-Tech Products Development, MECAHITECH (Vol. 10, pp. 232-246). Search in Google Scholar

Baronio, G., Harran, S. and Signoroni, A. (2016), ‘A critical analysis of a hand orthosis reverse engineering and 3D printing process’, Applied Bionics and Biomechanics, vol. 2016, Article ID 8347478, 7 pages.10.1155/2016/8347478499393127594781 Search in Google Scholar

Yeow, C. H., Baisch, A. T., Talbot, S. G., & Walsh, C. J. (2014). ‘Cable-Driven Finger Exercise Device With Extension Return Springs for Recreating Standard Therapy Exercises’. Journal of Medical Devices, 8(1), 014502.10.1115/1.4025449 Search in Google Scholar

Cram, J. R., Kasman, G. S. and Holtz, J. (2010), ‘Introduction to Surface Electromyography’, 2nd ed. Jones and Bartlett Publishers, 2010. Search in Google Scholar

Phinyomark, A., Phukpattaranont, P., & Limsakul, C. (2012). ‘Fractal analysis features for weak and single-channel upper-limb EMG signals’. Expert Systems with Applications, 39(12), 11156-11163.10.1016/j.eswa.2012.03.039 Search in Google Scholar

Mello, R. G., Oliveira, L. F., & Nadal, J. (2007). ‘Digital Butterworth filter for subtracting noise from low magnitude surface electromyogram’. Computer methods and programs in biomedicine, 87(1), 28-35.10.1016/j.cmpb.2007.04.00417548125 Search in Google Scholar

De Luca, C.J., Donald, L.G., Mikhail, K. and Serge, H.R. (2010). ‘Filtering the surface EMG signal: Movement artifact and baseline noise contamination’. Journal of Biomechanics, 43 (8), pp. 1573–1579.10.1016/j.jbiomech.2010.01.02720206934 Search in Google Scholar

Phinyomark, A., Phukpattaranont, P., & Limsakul, C. (2012c). ‘Feature reduction and selection for EMG signal classification’. Expert Systems with Applications, 39(8), 7420–7431.10.1016/j.eswa.2012.01.102 Search in Google Scholar

Oskoei, M. A., & Hu, H. (2008). ‘Support vector machine-based classification scheme for myoelectric control applied to upper limb’. IEEE transactions on biomedical engineering, 55(8), 1956-1965.10.1109/TBME.2008.91973418632358 Search in Google Scholar

Phinyomark, A., Limsakul, C., & Phukpattaranont, P. (2009a). ‘A novel feature extraction for robust EMG pattern recognition’, Journal of Computing, 1(1), 71–80. Search in Google Scholar

eISSN:
1178-5608
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Engineering, Introductions and Overviews, other