Open Access

The Stringent Response And Its Involvement In The Reactions Of Bacterial Cells To Stress


Cite

Ancona V., Lee J.H., Chatnaparat T., Oh J., Hong J-I., Zhao Y.: The bacterial alarmone (p)ppGpp activates the type III secretion system in Erwinia amylovora. J. Bacteriol. 197, 1433–1443 (2015)AnconaV.LeeJ.H.ChatnaparatT.OhJ.HongJ-I.ZhaoY.The bacterial alarmone (p)ppGpp activates the type III secretion system in Erwinia amylovoraJ. Bacteriol19714331443201510.1128/JB.02551-14437274725666138Search in Google Scholar

Aranda F.J., Espuny M.J., Marques A., Teruel J.A., Manresa Á., Ortiz A.: Thermodynamics of the interaction of a dirhamnolipid biosurfactant secreted by Pseudomonas aeruginosa with phospholipid membranes. Langmuir, 23, 2700–2705 (2007)ArandaF.J.EspunyM.J.MarquesA.TeruelJ.A.ManresaÁ.OrtizA.Thermodynamics of the interaction of a dirhamnolipid biosurfactant secreted by Pseudomonas aeruginosa with phospholipid membranesLangmuir2327002705200710.1021/la061464z17243729Search in Google Scholar

Atkinson G.C., Tenson T., Hauryliuk V.: The RelA/SpoT homolog (RSH) superfamily: distribution and functional evolution of ppGpp synthetases and hydrolases across the tree of life. PLoS One, 6, e23479 (2011)AtkinsonG.C.TensonT.HauryliukV.The RelA/SpoT homolog (RSH) superfamily: distribution and functional evolution of ppGpp synthetases and hydrolases across the tree of lifePLoS One6e23479201110.1371/journal.pone.0023479315348521858139Search in Google Scholar

Autret S., Levine A., Vannier F., Fujita Y., Séror S.J.: The replication checkpoint control in Bacillus subtilis: identification of a novel RTP-binding sequence essential for the replication fork arrest after induction of the stringent response. Mol. Microbiol. 31, 1665–1679 (1999)AutretS.LevineA.VannierF.FujitaY.SérorS.J.The replication checkpoint control in Bacillus subtilis: identification of a novel RTP-binding sequence essential for the replication fork arrest after induction of the stringent responseMol. Microbiol3116651679199910.1046/j.1365-2958.1999.01299.x10209741Search in Google Scholar

Barker M.M., Gaal T., Josaitis C.A., Gourse R.L.: Mechanism of regulation of transcription initiation by ppGpp. I. Effects of ppGpp on transcription initiation in vivo and in vitro. J. Mol. Biol. 305, 673–688 (2001)BarkerM.M.GaalT.JosaitisC.A.GourseR.L.Mechanism of regulation of transcription initiation by ppGpp. I. Effects of ppGpp on transcription initiation in vivo and in vitroJ. Mol. Biol305673688200110.1006/jmbi.2000.432711162084Search in Google Scholar

Bartlett M.S., Gourse R.L.: Growth rate-dependent control of the rrnB P1 core promoter in Escherichia coli. J. Bacteriol. 176, 5560–5564 (1994)BartlettM.S.GourseR.L.Growth rate-dependent control of the rrnB P1 core promoter in Escherichia coliJ. Bacteriol17655605564199410.1128/jb.176.17.5560-5564.19941967508071240Search in Google Scholar

Battesti A., Bouveret E.: Acyl carrier protein/SpoT interaction, the switch linking SpoT-dependent stress response to fatty acid metabolism. Mol. Microbiol. 62, 1048–1063 (2006)BattestiA.BouveretE.Acyl carrier protein/SpoT interaction, the switch linking SpoT-dependent stress response to fatty acid metabolismMol. Microbiol6210481063200610.1111/j.1365-2958.2006.05442.x17078815Search in Google Scholar

Baysse C., Cullinane M., Dénervaud V., Burrowes E., Dow J.M., Morrissey J.P., Tam L., Trevors J.T., O’Gara F.: Modulation of quorum sensing in Pseudomonas aeruginosa through alteration of membrane properties. Microbiology, 151, 2529–2542 (2005)BaysseC.CullinaneM.DénervaudV.BurrowesE.DowJ.M.MorrisseyJ.P.TamL.TrevorsJ.T.O’GaraF.Modulation of quorum sensing in Pseudomonas aeruginosa through alteration of membrane propertiesMicrobiology15125292542200510.1099/mic.0.28185-016079332Search in Google Scholar

Bell K.S., Toth I.K. et al.: Genome sequence of the enterobacterial phytopathogen Erwinia carotovora subsp. atroseptica and characterization of virulence factors. P. Natl. Acad. Sci. USA, 101, 11105–11110 (2004)BellK.S.TothI.K.Genome sequence of the enterobacterial phytopathogen Erwinia carotovora subsp. atroseptica and characterization of virulence factorsP. Natl. Acad. Sci. USA1011110511110200410.1073/pnas.040242410150374715263089Search in Google Scholar

Bergman J.M., Hammarlöf D.L., Hughes D.: Reducing ppGpp level rescues an extreme growth defect caused by mutant EF-Tu. PLoS One, 9, e90486 (2014)BergmanJ.M.HammarlöfD.L.HughesD.Reducing ppGpp level rescues an extreme growth defect caused by mutant EF-TuPLoS One9e90486201410.1371/journal.pone.0090486393875924587376Search in Google Scholar

Bowden S.D., Eyres A., Chung J.C.S., Monson R.E., Thompson A., Salmond G.P.C., Spring D.R., Welch M.: Virulence in Pectobacterium atrosepticum is regulated by a coincidence circuit involving quorum sensing and the stress alarmone, (p)ppGpp. Mol. Microbiol. 90, 457–471 (2013)BowdenS.D.EyresA.ChungJ.C.S.MonsonR.E.ThompsonA.SalmondG.P.C.SpringD.R.WelchM.Virulence in Pectobacterium atrosepticum is regulated by a coincidence circuit involving quorum sensing and the stress alarmone, (p)ppGppMol. Microbiol90457471201310.1111/mmi.12369Search in Google Scholar

Brint J.M., Ohman D.E.: Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR-RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI family. J. Bacteriol. 177, 7155–7163 (1995)BrintJ.M.OhmanD.E.Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR-RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI familyJ. Bacteriol17771557163199510.1128/jb.177.24.7155-7163.1995Search in Google Scholar

Browning D.F., Busby S.J.W.: Local and global regulation of transcription initiation in bacteria. Nat. Rev. Microbiol. 14, 638–650 (2016)BrowningD.F.BusbyS.J.W.Local and global regulation of transcription initiation in bacteriaNat. Rev. Microbiol14638650201610.1038/nrmicro.2016.103Search in Google Scholar

Butler M.T., Wang Q., Harshey R.M.: Cell density and mobility protect swarming bacteria against antibiotics. P. Natl. Acad. Sci. USA. 107, 3776–3781 (2010)ButlerM.T.WangQ.HarsheyR.M.Cell density and mobility protect swarming bacteria against antibioticsP. Natl. Acad. Sci. USA10737763781201010.1073/pnas.0910934107Search in Google Scholar

Cámara M., Williams P., Hardman A.: Controlling infection by tuning in and turning down the volume of bacterial small-talk. Lancet Infect. Dis. 2, 667–676 (2002)CámaraM.WilliamsP.HardmanA.Controlling infection by tuning in and turning down the volume of bacterial small-talkLancet Infect. Dis2667676200210.1016/S1473-3099(02)00447-4Search in Google Scholar

Cashel M., Gallant J.: Two compounds implicated in function of RC gene of Escherichia coli. Nature, 221, 838–841 (1969)CashelM.GallantJ.Two compounds implicated in function of RC gene of Escherichia coliNature221838841196910.1038/221838a04885263Search in Google Scholar

Chakraburtty R., Bibb M.: The ppGpp synthetase gene (relA) of Streptomyces coelicolor A3(2) plays a conditional role in antibiotic production and morphological differentiation. J. Bacteriol. 179, 5854–5861 (1997)ChakraburttyR.BibbM.The ppGpp synthetase gene (relA) of Streptomyces coelicolor A3(2) plays a conditional role in antibiotic production and morphological differentiationJ. Bacteriol17958545861199710.1128/jb.179.18.5854-5861.19971794779294445Search in Google Scholar

Chakravarty D., Banerjee M., Waghmare N., Ballal A.: Cyanobacterial Mn-catalase ‘KatB’: molecular link between salinity and oxidative stress resistance. Commun. Integr. Biol. 9, e1216738 (2016)ChakravartyD.BanerjeeM.WaghmareN.BallalA.Cyanobacterial Mn-catalase ‘KatB’: molecular link between salinity and oxidative stress resistanceCommun. Integr. Biol9e1216738201610.1080/19420889.2016.1216738510065727829979Search in Google Scholar

Chatnaparat T., Li Z., Korban S.S., Zhao Y.: The bacterial alarmone (p)ppGpp is required for virulence and controls cell size and survival of Pseudomonas syringae on plants. Environ. Microbiol. 17, 4253–4270 (2015)ChatnaparatT.LiZ.KorbanS.S.ZhaoY.The bacterial alarmone (p)ppGpp is required for virulence and controls cell size and survival of Pseudomonas syringae on plantsEnviron. Microbiol1742534270201510.1111/1462-2920.12744475867825626964Search in Google Scholar

Chatnaparat T., Li Z., Korban S.S., Zhao Y.: The stringent response mediated by (p)ppGpp is required for virulence of Pseudomonas syringae pv. tomato and its survival on tomato. Mol. Plant Microbe Interact. 28, 776–789 (2015)ChatnaparatT.LiZ.KorbanS.S.ZhaoY.The stringent response mediated by (p)ppGpp is required for virulence of Pseudomonas syringae pv. tomato and its survival on tomatoMol. Plant Microbe Interact28776789201510.1094/MPMI-11-14-0378-R25675257Search in Google Scholar

Choudhury P., Flower A.M.: Efficient assembly of ribosomes is inhibited by deletion of bipA in Escherichia coli. J. Bacteriol. 197, 1819–1827 (2015)ChoudhuryP.FlowerA.M.Efficient assembly of ribosomes is inhibited by deletion of bipA in Escherichia coliJ. Bacteriol19718191827201510.1128/JB.00023-15440239925777676Search in Google Scholar

Dalebroux Z.D., Svensson S.L., Gaynor E.C., Swanson M.S.: ppGpp conjures bacterial virulence. Microbiol. Mol. Biol. Rev. 74, 171–199 (2010)DalebrouxZ.D.SvenssonS.L.GaynorE.C.SwansonM.S.ppGpp conjures bacterial virulenceMicrobiol. Mol. Biol. Rev74171199201010.1128/MMBR.00046-09288440820508246Search in Google Scholar

Dąbrowska G., Prusińska J., Goc A.: The stringent response – bacterial mechanism of an adaptive stress response. Post. Bioch. 52, 87–93 (2006)DąbrowskaG.PrusińskaJ.GocA.The stringent response – bacterial mechanism of an adaptive stress responsePost. Bioch5287932006Search in Google Scholar

DeLivron M.A., Robinson V.L.: Salmonella enterica serovar Typhimurium BipA exhibits two distinct ribosome binding modes. J. Bacteriol. 190, 5944–5952 (2008)DeLivronM.A.RobinsonV.L.Salmonella enterica serovar Typhimurium BipA exhibits two distinct ribosome binding modesJ. Bacteriol19059445952200810.1128/JB.00763-08251951318621905Search in Google Scholar

DeNapoli J., Techranchi A.K., Wang J.D.: Dose-dependent reduction of replication elongation rate by (p)ppGpp in Escherichia coli and Bacillus subtilis. Mol. Microbiol. 88, 93–104 (2013)DeNapoliJ.TechranchiA.K.WangJ.D.Dose-dependent reduction of replication elongation rate by (p)ppGpp in Escherichia coli and Bacillus subtilisMol. Microbiol8893104201310.1111/mmi.12172364087123461544Search in Google Scholar

Diggle S.P., Winzer K., Chhabra S.R., Worrall K.E., Cámara M., Williams P.: The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol. Microbiol. 50, 29–43 (2003)DiggleS.P.WinzerK.ChhabraS.R.WorrallK.E.CámaraM.WilliamsP.The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasRMol. Microbiol.502943200310.1046/j.1365-2958.2003.03672.x14507361Search in Google Scholar

English B.P., Hauryliuk V., Sanamrad A., Tankov S., Dekker N.H., Elf J.: Single-molecule investigations of the stringent response machinery in living bacterial cells. P. Natl. Acad. Sci. USA, 108, 365–373 (2011)EnglishB.P.HauryliukV.SanamradA.TankovS.DekkerN.H.ElfJ.Single-molecule investigations of the stringent response machinery in living bacterial cellsP. Natl. Acad. Sci. USA108365373201110.1073/pnas.1102255108315088821730169Search in Google Scholar

Feng B., Gao N. et al.: Structural and functional insights into the mode of action of a universally conserved Obg GTPase. PLoS Biol. 12, e1001866 (2014)FengB.GaoN.Structural and functional insights into the mode of action of a universally conserved Obg GTPasePLoS Biol12e1001866201410.1371/journal.pbio.1001866402818624844575Search in Google Scholar

Flärdh K., Axberg T., Albertson N.H., Kjelleberg S.: Stringent control during carbon starvation of marine Vibrio sp. strain S14: molecular cloning, nucleotide sequence, and deletion of the relA gene. J. Bacteriol. 176, 5949–5957 (1994)FlärdhK.AxbergT.AlbertsonN.H.KjellebergS.Stringent control during carbon starvation of marine Vibrio sp. strain S14: molecular cloning, nucleotide sequence, and deletion of the relA geneJ. Bacteriol17659495957199410.1128/jb.176.19.5949-5957.19941968117928955Search in Google Scholar

Flåtten I., Skarstad K.: The Fis protein has a stimulating role in initiation of replication in Escherichia coli in vivo. PLoS One, 8, e83562 (2013)FlåttenI.SkarstadK.The Fis protein has a stimulating role in initiation of replication in Escherichia coli in vivoPLoS One8e83562201310.1371/journal.pone.0083562386518224358293Search in Google Scholar

Flavier A.B., Schell M.A., Denny T.P.: An RpoS (σs) homologue regulates acylhomoserine lactone-dependent autoinduction in Ralstonia solanacearum. Mol Microbiol. 28, 475–486 (1998)FlavierA.B.SchellM.A.DennyT.P.An RpoS (σs) homologue regulates acylhomoserine lactone-dependent autoinduction in Ralstonia solanacearumMol Microbiol28475486199810.1046/j.1365-2958.1998.00804.x9632252Search in Google Scholar

Flemming H-C., Wingender J., Szewzyk U., Steinberg P., Rice S.A., Kjelleberg S.: Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14, 563–575 (2016)FlemmingH-C.WingenderJ.SzewzykU.SteinbergP.RiceS.A.KjellebergS.Biofilms: an emergent form of bacterial lifeNat. Rev. Microbiol14563575201610.1038/nrmicro.2016.94Search in Google Scholar

Fuqua W.C., Winans S.C.: A LuxR-LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metabolite. J. Bacteriol. 176, 2796–2806 (1994)FuquaW.C.WinansS.C.A LuxR-LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metaboliteJ. Bacteriol17627962806199410.1128/jb.176.10.2796-2806.1994Search in Google Scholar

Gaal T., Bartlett M.S., Ross W., Turnbrough C.L. Jr., Gourse R.L.: Transcription regulation by initiating NTP concentration: rRNA synthesis in bacteria. Science, 278, 2092–2097 (1997)GaalT.BartlettM.S.RossW.TurnbroughC.L.Jr.GourseR.L.Transcription regulation by initiating NTP concentration: rRNA synthesis in bacteriaScience27820922097199710.1126/science.278.5346.2092Search in Google Scholar

Gaca A.O., Colomer-Winter C., Lemos J.A.: Many means to a common end: the intricacies of (p)ppGpp metabolism and its control of bacterial homeostasis. J. Bacteriol. 197, 1146–1156 (2015)GacaA.O.Colomer-WinterC.LemosJ.A.Many means to a common end: the intricacies of (p)ppGpp metabolism and its control of bacterial homeostasisJ. Bacteriol19711461156201510.1128/JB.02577-14Search in Google Scholar

Gallant J., Palmer L., Pao C.C.: Anomalous synthesis of ppGpp in growing cells. Cell, 11, 181–185 (1977)GallantJ.PalmerL.PaoC.C.Anomalous synthesis of ppGpp in growing cellsCell11181185197710.1016/0092-8674(77)90329-4Search in Google Scholar

Gentry D.R., Hernandez V.J., Nguyen L.H., Jensen D.B., Cashel M.: Synthesis of the stationary-phase sigma factor σs is positively regulated by ppGpp. J. Bacteriol. 175, 7982–7989 (1993)GentryD.R.HernandezV.J.NguyenL.H.JensenD.B.CashelM.Synthesis of the stationary-phase sigma factor σs is positively regulated by ppGppJ. Bacteriol17579827989199310.1128/jb.175.24.7982-7989.1993Search in Google Scholar

Goldberg J.B.: Pseudomonas: global bacteria. Trends Microbiol. 8, 55–57 (2000)GoldbergJ.B.Pseudomonas: global bacteriaTrends Microbiol85557200010.1016/S0966-842X(99)01671-6Search in Google Scholar

Haba E., Pinazo A., Jauregui O., Espuny M.J., Infante M.R., Manresa A.: Physicochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47T2 NCBIM 40044. Biotechnol. Bioeng. 81, 316–322 (2003)HabaE.PinazoA.JaureguiO.EspunyM.J.InfanteM.R.ManresaA.Physicochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47T2 NCBIM 40044Biotechnol. Bioeng81316322200310.1002/bit.1047412474254Search in Google Scholar

Hamel E., Cashel M.: Role of guanine nucleotides in protein synthesis. Elongation factor G and guanosine 5’-triphosphate, 3’-diphosphate. P. Natl. Acad. Sci. USA. 70, 3250–3254 (1973)HamelE.CashelM.Role of guanine nucleotides in protein synthesisElongation factor G and guanosine 5’-triphosphate, 3’-diphosphateP. Natl. Acad. Sci. USA7032503254197310.1073/pnas.70.11.32504272104594040Search in Google Scholar

Haseltine W.A., Block R.: Synthesis of guanosine tetra- and pentaphosphate requires the presence of a codon-specific, uncharged transfer ribonucleic acid in the acceptor site of ribosomes. P. Natl. Acad. Sci. USA. 70, 1564–1568 (1973)HaseltineW.A.BlockR.Synthesis of guanosine tetra- and pentaphosphate requires the presence of a codon-specific, uncharged transfer ribonucleic acid in the acceptor site of ribosomesP. Natl. Acad. Sci. USA7015641568197310.1073/pnas.70.5.15644335434576025Search in Google Scholar

Hassett D.J., Iglewski B.H. et al.: Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Mol. Microbiol. 34, 1082–1093 (1999)HassettD.J.IglewskiB.H.Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxideMol. Microbiol3410821093199910.1046/j.1365-2958.1999.01672.xSearch in Google Scholar

Haugen S.P., Berkmen M.B., Ross W., Gaal T., Ward C., Gourse R.L.: rRNA promoter regulation by nonoptimal binding of σ region 1.2: an additional recognition element for RNA polymerase. Cell, 125, 1069–1082 (2006)HaugenS.P.BerkmenM.B.RossW.GaalT.WardC.GourseR.L.rRNA promoter regulation by nonoptimal binding of σ region 1.2: an additional recognition element for RNA polymeraseCell12510691082200610.1016/j.cell.2006.04.034Search in Google Scholar

Hauryliuk V., Atkinson G.C., Murakami K.S., Tenson T., Gerdes K.: Recent functional insights into the role of (p)ppGpp in bacterial physiology. Nat. Rev. Microbiol. 13, 298–309 (2015)HauryliukV.AtkinsonG.C.MurakamiK.S.TensonT.GerdesK.Recent functional insights into the role of (p)ppGpp in bacterial physiologyNat. Rev. Microbiol13298309201510.1038/nrmicro3448Search in Google Scholar

Hausner M., Wuertz S.: High rates of conjugation in bacterial biofilms as determined by quantitative in situ analysis. Appl. Environ. Microbiol. 65, 3710–3713 (1999)HausnerM.WuertzS.High rates of conjugation in bacterial biofilms as determined by quantitative in situ analysisAppl. Environ. Microbiol6537103713199910.1128/AEM.65.8.3710-3713.1999Search in Google Scholar

Hesketh A., Sun J., Bibb M.: Induction of ppGpp synthesis in Streptomyces coelicolor A3(2) grown under conditions of nutritional sufficiency elicits actII-ORF4 transcription and actinorhodin biosynthesis. Mol. Microbiol. 39, 136–144 (2001)HeskethA.SunJ.BibbM.Induction of ppGpp synthesis in Streptomyces coelicolor A3(2) grown under conditions of nutritional sufficiency elicits actII-ORF4 transcription and actinorhodin biosynthesisMol. Microbiol39136144200110.1046/j.1365-2958.2001.02221.xSearch in Google Scholar

Hogg T., Mechold U., Malke H., Cashel M., Hilgenfeld R.: Conformational antagonism between opposing active sites in a bifunctional RelA/SpoT homolog modulates (p)ppGpp metabolism during the stringent response. Cell, 117, 57–68 (2004)HoggT.MecholdU.MalkeH.CashelM.HilgenfeldR.Conformational antagonism between opposing active sites in a bifunctional RelA/SpoT homolog modulates (p)ppGpp metabolism during the stringent responseCell1175768200410.1016/S0092-8674(04)00260-0Search in Google Scholar

Huang L., McCluskey M.P., Ni H., LaRossa R.A.: Global gene expression profiles of the Cyanobacterium Synechocystis sp. strain PCC 6803 in response to irradiation with UV-B and white light. J. Bacteriol. 184, 6845–6858 (2002)HuangL.McCluskeyM.P.NiH.LaRossaR.A.Global gene expression profiles of the Cyanobacterium Synechocystis sp. strain PCC 6803 in response to irradiation with UV-B and white lightJ. Bacteriol18468456858200210.1128/JB.184.24.6845-6858.200213546312446635Search in Google Scholar

Itikawa H., Fujita H., Wada M.: High temperature induction of a stringent response in the dnaK (Ts) and dnaJ (Ts) mutants of Escherichia coli. J. Biochem. 99, 1719–1724 (1986)ItikawaH.FujitaH.WadaM.High temperature induction of a stringent response in the dnaK (Ts) and dnaJ (Ts) mutants of Escherichia coliJ. Biochem9917191724198610.1093/oxfordjournals.jbchem.a1356482427506Search in Google Scholar

Jayaseelan S., Ramaswamy D., Dharmaraj S.: Pyocyanin: production, applications, challenges and new insights. World J. Microb. Biot. 30, 1159–1168 (2014)JayaseelanS.RamaswamyD.DharmarajS.Pyocyanin: production, applications, challenges and new insightsWorld J. Microb. Biot3011591168201410.1007/s11274-013-1552-524214679Search in Google Scholar

Jensen P.Ø., Høiby N. et al.: Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing – controlled production of rhamnolipid by Pseudomonas aeruginosa. Microbiology, 153, 1329–1338 (2007)JensenP.Ø.HøibyN.Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing – controlled production of rhamnolipid by Pseudomonas aeruginosaMicrobiology15313291338200710.1099/mic.0.2006/003863-017464047Search in Google Scholar

Ji G., Beavis R.C., Novick R.P.: Cell density control of staphylococcal virulence mediated by an octapeptide pheromone. P. Natl. Acad. Sci. USA. 92, 12055–12059 (1995)JiG.BeavisR.C.NovickR.P.Cell density control of staphylococcal virulence mediated by an octapeptide pheromoneP. Natl. Acad. Sci. USA921205512059199510.1073/pnas.92.26.12055402958618843Search in Google Scholar

Kalia D., Merey G., Nakayama S., Zheng Y., Zhou J., Luo Y., Guo M., Roembke B.T., Sintim H.O.: Nucleotide, c-di-GMP, c-di-AMP, cGMP, cAMP, (p)ppGpp signaling in bacteria and implications in pathogenesis. Chem. Soc. Rev. 42, 305–341 (2013)KaliaD.MereyG.NakayamaS.ZhengY.ZhouJ.LuoY.GuoM.RoembkeB.T.SintimH.O.Nucleotide, c-di-GMP, c-di-AMP, cGMP, cAMP, (p)ppGpp signaling in bacteria and implications in pathogenesisChem. Soc. Rev42305341201310.1039/C2CS35206K23023210Search in Google Scholar

Kamarthapu V., Epshtein V., Benjamin B., Poroshkin S., Mironov A., Cashel M., Nudler E.: ppGpp couples transcription to DNA repair in E. coli. Science, 352, 993–996 (2016)KamarthapuV.EpshteinV.BenjaminB.PoroshkinS.MironovA.CashelM.NudlerE.ppGpp couples transcription to DNA repair in E. coliScience352993996201610.1126/science.aad6945491778427199428Search in Google Scholar

Kearns D.B.: A field guide to bacterial swarming motility. Nat. Rev. Microbiol. 8, 634–644 (2010)KearnsD.B.A field guide to bacterial swarming motilityNat. Rev. Microbiol8634644201010.1038/nrmicro2405313501920694026Search in Google Scholar

Keren I., Shah D., Spoering A., Kaldalu N., Lewis K.: Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J. Bacteriol. 186, 8172–8180 (2004)KerenI.ShahD.SpoeringA.KaldaluN.LewisK.Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coliJ. Bacteriol18681728180200410.1128/JB.186.24.8172-8180.200453243915576765Search in Google Scholar

Khakimova M., Ahlgren H.G., Harrison J.J., English A.M., Nguyen D.: The stringent response controls catalases in Pseudomonas aeruginosa and is required for hydrogen peroxide and antibiotic tolerance. J. Bacteriol. 195, 2011–2020 (2013)KhakimovaM.AhlgrenH.G.HarrisonJ.J.EnglishA.M.NguyenD.The stringent response controls catalases in Pseudomonas aeruginosa and is required for hydrogen peroxide and antibiotic toleranceJ. Bacteriol19520112020201310.1128/JB.02061-12362457323457248Search in Google Scholar

Kołwzan B.: Analysis of biofilms – their formation and functioning. Ochr. Śr. 33, 3–14 (2011)KołwzanB.Analysis of biofilms – their formation and functioningOchr. Śr.333142011Search in Google Scholar

Krasny L., Gourse R.L.: An alternative strategy for bacterial ribosome synthesis: Bacillus subtilis rRNA transcription. EMBO J. 23, 4473–4483 (2004)KrasnyL.GourseR.L.An alternative strategy for bacterial ribosome synthesis: Bacillus subtilis rRNA transcriptionEMBO J2344734483200410.1038/sj.emboj.760042352645715496987Search in Google Scholar

Kriel A., Bittner A.N., Kim S.H., Liu K., Tehranchi A.K., Zou W.Y., Rendon S., Chen R., Tu B.P., Wang J.D.: Direct regulation of GTP homeostasis by (p)ppGpp: a critical component of viability and stress resistance. Mol. Cell, 48, 231–241 (2012)KrielA.BittnerA.N.KimS.H.LiuK.TehranchiA.K.ZouW.Y.RendonS.ChenR.TuB.P.WangJ.D.Direct regulation of GTP homeostasis by (p)ppGpp: a critical component of viability and stress resistanceMol. Cell48231241201210.1016/j.molcel.2012.08.009348336922981860Search in Google Scholar

Kumar V., Chen Y., Ero R., Ahmed T., Tan J., Li Z., See Weng Wong A., Bhushan S., Gao Y-G.: Structure of BipA in GTP form bound to the ratcheted ribosome. P. Natl. Acad. Sci. USA. 112, 10944–10949 (2015)KumarV.ChenY.EroR.AhmedT.TanJ.LiZ.See Weng WongA.BhushanS.GaoY-G.Structure of BipA in GTP form bound to the ratcheted ribosomeP. Natl. Acad. Sci. USA1121094410949201510.1073/pnas.1513216112456823926283392Search in Google Scholar

Kuźniak E., Urbanek H.: The involvement of hydrogen peroxide in plant responses to stresses. Acta Physiol. Plant. 22, 195–203 (2000)KuźniakE.UrbanekH.The involvement of hydrogen peroxide in plant responses to stressesActa Physiol. Plant22195203200010.1007/s11738-000-0076-4Search in Google Scholar

Laabei M., Jamieson W.D., Lewis S.E., Diggle S.P., Jenkins A.T.A.: A new assay for rhamnolipid detection – important virulence factors of Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol. 98, 7199–7209 (2014)LaabeiM.JamiesonW.D.LewisS.E.DiggleS.P.JenkinsA.T.A.A new assay for rhamnolipid detection – important virulence factors of Pseudomonas aeruginosaAppl. Microbiol. Biotechnol9871997209201410.1007/s00253-014-5904-3Search in Google Scholar

Lang J., Faure D.: Functions and regulation of quorum-sensing in Agrobacterium tumefaciens. Front. Plant Sci. DOI:10.3389/fpls.2014.00014 (2014)LangJ.FaureD.Functions and regulation of quorum-sensing in Agrobacterium tumefaciensFront. Plant SciDOI:10.3389/fpls.2014.000142014Open DOISearch in Google Scholar

Leigh J.A., Dodsworth J.A.: Nitrogen regulation in bacteria and archaea. Annu. Rev. Microbiol. 61, 349–377 (2007)LeighJ.A.DodsworthJ.A.Nitrogen regulation in bacteria and archaeaAnnu. Rev. Microbiol61349377200710.1146/annurev.micro.61.080706.093409Search in Google Scholar

Levine A., Vannier F., Dehbi M., Henckes G., Séror S.J.: The stringent response blocks DNA replication outside the ori region in Bacillus subtilis and at the origin in Escherichia coli. J. Mol. Biol. 219, 605–613 (1991)LevineA.VannierF.DehbiM.HenckesG.SérorS.J.The stringent response blocks DNA replication outside the ori region in Bacillus subtilis and at the origin in Escherichia coliJ. Mol. Biol219605613199110.1016/0022-2836(91)90657-RSearch in Google Scholar

Loveland A.B., Bah E., Madireddy R., Zhang Y., Brilot A.F., Grigorieff N., Korostelev A.A.: Ribosome•RelA structures reveal the mechanism of stringent response activation. Elife, 5, e17029 (2016)LovelandA.B.BahE.MadireddyR.ZhangY.BrilotA.F.GrigorieffN.KorostelevA.A.Ribosome•RelA structures reveal the mechanism of stringent response activationElife5e17029201610.7554/eLife.17029497405427434674Search in Google Scholar

Maciąg-Dorszyńska M., Szalewska-Pałasz A., Węgrzyn G.: Different effects of ppGpp on Escherichia coli DNA replication in vivo and in vitro. FEBS Open Bio. 3, 161–164 (2013)Maciąg-DorszyńskaM.Szalewska-PałaszA.WęgrzynG.Different effects of ppGpp on Escherichia coli DNA replication in vivo and in vitroFEBS Open Bio3161164201310.1016/j.fob.2013.03.001366853723772389Search in Google Scholar

Martins D., McKay G., Sampathkumar G., Khakimova M., English A.M., Nguyen D.: Superoxide dismutase activity confers (p)ppGpp mediated antibiotic tolerance to stationary-phase Pseudomonas aeruginosa. P. Natl. Acad. Sci. USA, 115, 9797–9802 (2018)MartinsD.McKayG.SampathkumarG.KhakimovaM.EnglishA.M.NguyenD.Superoxide dismutase activity confers (p)ppGpp mediated antibiotic tolerance to stationary-phase Pseudomonas aeruginosaP. Natl. Acad. Sci. USA11597979802201810.1073/pnas.1804525115616679730201715Search in Google Scholar

McKnight S.L., Iglewski B.H., Pesci E.C.: The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa. J. Bacteriol. 182, 2702–2708 (2000)McKnightS.L.IglewskiB.H.PesciE.C.The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosaJ. Bacteriol18227022708200010.1128/JB.182.10.2702-2708.200010197210781536Search in Google Scholar

Mechold U., Potrykus K., Murphy H., Murakami K.S., Cashel M.: Differential regulation by ppGpp versus pppGpp in Escherichia coli. Nucleic Acids Res. 41, 6175–6189 (2013)MecholdU.PotrykusK.MurphyH.MurakamiK.S.CashelM.Differential regulation by ppGpp versus pppGpp in Escherichia coliNucleic Acids Res4161756189201310.1093/nar/gkt302369551723620295Search in Google Scholar

Metzler M.C., Laine M.J., De Boer S.H.: The status of molecular biological research on the plant pathogenic genus Clavibacter. FEMS Microbiol. Lett. 150, 1–8 (1997)MetzlerM.C.LaineM.J.De BoerS.H.The status of molecular biological research on the plant pathogenic genus ClavibacterFEMS Microbiol. Lett15018199710.1111/j.1574-6968.1997.tb10342.xSearch in Google Scholar

Molodtsov V., Sineva E., Zhang L., Huang X., Cashel M., Ades S.E., Murakami K.S.: Allosteric effector ppGpp potentiates the inhibition of transcript initiation by DksA. Mol. Cell, 69, 1–12 (2018)MolodtsovV.SinevaE.ZhangL.HuangX.CashelM.AdesS.E.MurakamiK.S.Allosteric effector ppGpp potentiates the inhibition of transcript initiation by DksAMol. Cell69112201810.1016/j.molcel.2018.01.035583781829478808Search in Google Scholar

Murakami K.S.: X-ray crystal structure of Escherichia coli RNA polymerase σ70. J. Biol. Chem. 288, 9126–9134 (2013)MurakamiK.S.X-ray crystal structure of Escherichia coli RNA polymerase σ70J. Biol. Chem28891269134201310.1074/jbc.M112.430900361098523389035Search in Google Scholar

Ng W-L., Bassler B.L.: Bacterial quorum-sensing network architectures. Annu. Rev. Genet. 43, 197–222 (2009)NgW-L.BasslerB.L.Bacterial quorum-sensing network architecturesAnnu. Rev. Genet43197222200910.1146/annurev-genet-102108-134304431353919686078Search in Google Scholar

Nguyen D., Singh P.K. et al.: Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science, 334, 982–986 (2011)NguyenD.SinghP.K.Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteriaScience334982986201110.1126/science.1211037404689122096200Search in Google Scholar

Okada Y., Makino S., Tobe T., Okada N., Yamazaki S.: Cloning of rel from Listeria monocytogenes as an osmotolerance involvement gene. Appl. Environ. Microbiol. 68, 1541–1547 (2002)OkadaY.MakinoS.TobeT.OkadaN.YamazakiS.Cloning of rel from Listeria monocytogenes as an osmotolerance involvement geneAppl. Environ. Microbiol6815411547200210.1128/AEM.68.4.1541-1547.200212388011916666Search in Google Scholar

Passador L., Cook J.M., Gambello M.J., Rust L., Iglewski B.H.: Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science, 260, 1127–1130 (1993)PassadorL.CookJ.M.GambelloM.J.RustL.IglewskiB.H.Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communicationScience26011271130199310.1126/science.84935568493556Search in Google Scholar

Paul B.J., Berkmen M.B., Gourse R.L.: DksA potentiates direct activation of amino acid promoters by ppGpp. P. Natl. Acad. Sci. USA. 102, 7823–7828 (2005)PaulB.J.BerkmenM.B.GourseR.L.DksA potentiates direct activation of amino acid promoters by ppGppP. Natl. Acad. Sci. USA10278237828200510.1073/pnas.0501170102114237115899978Search in Google Scholar

Pearson J.P., Gray K.M., Passador L., Tucker K.D., Eberhard A., Iglewski B.H., Greenberg E.P.: Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. P. Natl. Acad. Sci. USA. 91, 197–201 (1994)PearsonJ.P.GrayK.M.PassadorL.TuckerK.D.EberhardA.IglewskiB.H.GreenbergE.P.Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genesP. Natl. Acad. Sci. USA91197201199410.1073/pnas.91.1.197429138278364Search in Google Scholar

Pearson J.P., Passador L., Iglewski B.H., Greenberg E.P.: A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. P. Natl. Acad. Sci. USA, 92, 1490–1494 (1995)PearsonJ.P.PassadorL.IglewskiB.H.GreenbergE.P.A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosaP. Natl. Acad. Sci. USA9214901494199510.1073/pnas.92.5.1490425457878006Search in Google Scholar

Pearson J.P., Pesci E.C., Iglewski B.H.: Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J. Bacteriol. 179, 5756–5767 (1997)PearsonJ.P.PesciE.C.IglewskiB.H.Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genesJ. Bacteriol17957565767199710.1128/jb.179.18.5756-5767.19971794649294432Search in Google Scholar

Petrova O., Gorshkov V., Daminova A., Ageeva M., Moleleki L.N., Gogolev Y.: Stress response in Pectobacterium atrosepticum SCRI1043 under starvation conditions: adaptive reactions at a low population density. Res. Microbiol. 165, 119–127 (2014)PetrovaO.GorshkovV.DaminovaA.AgeevaM.MolelekiL.N.GogolevY.Stress response in Pectobacterium atrosepticum SCRI1043 under starvation conditions: adaptive reactions at a low population densityRes. Microbiol165119127201410.1016/j.resmic.2013.11.00424300393Search in Google Scholar

Pingoud A., Block W.: The elongation factor Tu•guanosine tetraphosphate complex. Eur. J. Biochem. 116, 631–634 (1981)PingoudA.BlockW.The elongation factor Tu•guanosine tetraphosphate complexEur. J. Biochem116631634198110.1111/j.1432-1033.1981.tb05382.x7021151Search in Google Scholar

Potrykus K., Cashel M.: (p)ppGpp: still magical? Annu. Rev. Microbiol. 62, 35–51 (2008)PotrykusK.CashelM.(p)ppGpp: still magical?Annu. Rev. Microbiol623551200810.1146/annurev.micro.62.081307.16290318454629Search in Google Scholar

Rabin N., Zheng Y., Opoku-Temeng C., Du Y., Bonsu E., Sintim H.O.: Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med. Chem. 7, 493–512 (2015)RabinN.ZhengY.Opoku-TemengC.DuY.BonsuE.SintimH.O.Biofilm formation mechanisms and targets for developing antibiofilm agentsFuture Med. Chem7493512201510.4155/fmc.15.625875875Search in Google Scholar

Raskin D.M., Judson N., Mekalanos J.J.: Regulation of the stringent response is the essential function of the conserved bacterial G protein CgtA in Vibrio cholerae. P. Natl. Acad. Sci. USA, 104, 4636–4641 (2007)RaskinD.M.JudsonN.MekalanosJ.J.Regulation of the stringent response is the essential function of the conserved bacterial G protein CgtA in Vibrio choleraeP. Natl. Acad. Sci. USA10446364641200710.1073/pnas.0611650104183865317360576Search in Google Scholar

Rasmussen T.B., Givskov M.: Quorum-sensing inhibitors as anti-pathogenic drugs. Int. J. Med. Microbiol. 296, 149–161 (2006)RasmussenT.B.GivskovM.Quorum-sensing inhibitors as anti-pathogenic drugsInt. J. Med. Microbiol296149161200610.1016/j.ijmm.2006.02.00516503194Search in Google Scholar

Rocha E.R., Smith C.J.: Regulation of Bacteroides fragilis katB mRNA by oxidative stress and carbon limitation. J. Bacteriol. 179, 7033–7039 (1997)RochaE.R.SmithC.J.Regulation of Bacteroides fragilis katB mRNA by oxidative stress and carbon limitationJ. Bacteriol17970337039199710.1128/jb.179.22.7033-7039.19971796449371450Search in Google Scholar

Ross W., Sanchez-Vazquez P., Chen A.Y., Lee J-H., Burgos H.L., Gourse R.L.: ppGpp binding to a site at the RNAP-DksA interface accounts for its dramatic effects on transcription initiation during the stringent response. Mol. Cell, 62, 811–823 (2016)RossW.Sanchez-VazquezP.ChenA.Y.LeeJ-H.BurgosH.L.GourseR.L.ppGpp binding to a site at the RNAP-DksA interface accounts for its dramatic effects on transcription initiation during the stringent responseMol. Cell62811823201610.1016/j.molcel.2016.04.029491244027237053Search in Google Scholar

Ross W., Vrentas C.E., Sanchez-Vazquez P., Gaal T., Gourse R.L.: The magic spot: a ppGpp binding site on E. coli RNA plymerase responsible for regulation of transcription initiation. Mol. Cell, 50, 420–429 (2013)RossW.VrentasC.E.Sanchez-VazquezP.GaalT.GourseR.L.The magic spot: a ppGpp binding site on E. coli RNA plymerase responsible for regulation of transcription initiationMol. Cell50420429201310.1016/j.molcel.2013.03.021365402423623682Search in Google Scholar

Ruffing A.M., Chen R.R.: Transcriptome profiling of a curdlan-producing Agrobacterium reveals conserved regulatory mechanisms of exopolysaccharide biosynthesis. Microb. Cell Fact. DOI:10.1186/1475-2859-11-17 (2012)RuffingA.M.ChenR.R.Transcriptome profiling of a curdlan-producing Agrobacterium reveals conserved regulatory mechanisms of exopolysaccharide biosynthesisMicrob. Cell FactDOI:10.1186/1475-2859-11-172012329303422305302Open DOISearch in Google Scholar

Rumbaugh K.P., Griswold J.A., Hamood A.N.: The role of quorum sensing in the in vivo virulence of Pseudomonas aeruginosa. Microbes Infect. 2, 1721–1731 (2000)RumbaughK.P.GriswoldJ.A.HamoodA.N.The role of quorum sensing in the in vivo virulence of Pseudomonas aeruginosaMicrobes Infect217211731200010.1016/S1286-4579(00)01327-7Search in Google Scholar

Rymer R.U., Solorio F.A., Techranchi A., Chu C., Corn J.E., Keck J.L., Wang J.D., Berger J.M.: Nucleotide-bound structures of the DnaG catalytic core reveal how metal•NTP substrates are bound during primer synthesis and blocked by stringent response alarmones. Structure, 20, 1478–1489 (2012)RymerR.U.SolorioF.A.TechranchiA.ChuC.CornJ.E.KeckJ.L.WangJ.D.BergerJ.M.Nucleotide-bound structures of the DnaG catalytic core reveal how metal•NTP substrates are bound during primer synthesis and blocked by stringent response alarmonesStructure2014781489201210.1016/j.str.2012.05.017343838122795082Search in Google Scholar

Sánchez M., Aranda F.J., Teruel J.A., Espuny M.J., Marqués A., Manresa Á., Ortiz A.: Permeabilization of biological and artificial membranes by a bacterial dirhamnolipid produced by Pseudomonas aeruginosa. J. Colloid Interf. Sci. 341, 240–247 (2010)SánchezM.ArandaF.J.TeruelJ.A.EspunyM.J.MarquésA.ManresaÁ.OrtizA.Permeabilization of biological and artificial membranes by a bacterial dirhamnolipid produced by Pseudomonas aeruginosaJ. Colloid Interf. Sci341240247201010.1016/j.jcis.2009.09.04219837413Search in Google Scholar

Schuster M., Hawkins A.C., Harwood C.S., Greenberg E.P.: The Pseudomonas aeruginosa RpoS regulon and its relationship to quorum sensing. Mol. Microbiol. 51, 973–985 (2004)SchusterM.HawkinsA.C.HarwoodC.S.GreenbergE.P.The Pseudomonas aeruginosa RpoS regulon and its relationship to quorum sensingMol. Microbiol51973985200410.1046/j.1365-2958.2003.03886.x14763974Search in Google Scholar

Seyfzadeh M., Keener J., Nomura M.: spoT-dependent accumulation of guanosine tetraphosphate in response to fatty acid starvation in Escherichia coli. P. Natl. Acad. Sci. USA, 90, 11004–11008 (1993)SeyfzadehM.KeenerJ.NomuraM.spoT-dependent accumulation of guanosine tetraphosphate in response to fatty acid starvation in Escherichia coliP. Natl. Acad. Sci. USA901100411008199310.1073/pnas.90.23.11004479107504290Search in Google Scholar

Shyp V., Tankov S., Ermakov A., Kudrin P., English B.P., Ehrenberg M., Tenson T., Elf J., Hauryliuk V.: Positive allosteric feedback regulation of the stringent response enzyme RelA by its product. EMBO Rep. 13, 835–839 (2012)ShypV.TankovS.ErmakovA.KudrinP.EnglishB.P.EhrenbergM.TensonT.ElfJ.HauryliukV.Positive allosteric feedback regulation of the stringent response enzyme RelA by its productEMBO Rep13835839201210.1038/embor.2012.106343279822814757Search in Google Scholar

Silo-Suh L., Suh S-J., Sokol P.A., Ohman D.E.: A simple alfalfa seedling infection model for Pseudomonas aeruginosa strains associated with cystic fibrosis shows AlgT (sigma-22) and RhlR contribute to pathogenesis. P. Natl. Acad. Sci. USA, 99, 15699–15704 (2002)Silo-SuhL.SuhS-J.SokolP.A.OhmanD.E.A simple alfalfa seedling infection model for Pseudomonas aeruginosa strains associated with cystic fibrosis shows AlgT (sigma-22) and RhlR contribute to pathogenesisP. Natl. Acad. Sci. USA991569915704200210.1073/pnas.24234399913777912426404Search in Google Scholar

Solomon J.M., Lazazzera B.A., Grossman A.D.: Purification and characterization of an extracellular peptide factor that affects two different developmental pathways in Bacillus subtilis. Genes Dev. 10, 2014–2024 (1996)SolomonJ.M.LazazzeraB.A.GrossmanA.D.Purification and characterization of an extracellular peptide factor that affects two different developmental pathways in Bacillus subtilisGenes Dev1020142024199610.1101/gad.10.16.20148769645Search in Google Scholar

Sonenshein A.L.: CodY, a global regulator of stationary phase and virulence in Gram-positive bacteria. Curr. Opin. Microbiol. 8, 203–207 (2005)SonensheinA.L.CodY, a global regulator of stationary phase and virulence in Gram-positive bacteriaCurr. Opin. Microbiol8203207200510.1016/j.mib.2005.01.00115802253Search in Google Scholar

Srivatsan A., Wang J.D.: Control of bacterial transcription, translation and replication by (p)ppGpp. Curr. Opin. Microbiol. 11, 100–105 (2008)SrivatsanA.WangJ.D.Control of bacterial transcription, translation and replication by (p)ppGppCurr. Opin. Microbiol11100105200810.1016/j.mib.2008.02.00118359660Search in Google Scholar

Steinchen W., Bange G.: The magic dance of the alarmones (p)ppGpp. Mol. Microbiol. 101, 531–544 (2016)SteinchenW.BangeG.The magic dance of the alarmones (p)ppGppMol. Microbiol101531544201610.1111/mmi.13412Search in Google Scholar

Strugeon E., Tilloy V., Ploy M-C., Da Re S.: The stringent response promotes antibiotic resistance dissemination by regulating integron integrase expression in biofilms. MBio. 7, e00868-16 (2016)StrugeonE.TilloyV.Ploy M-C., Da ReS.The stringent response promotes antibiotic resistance dissemination by regulating integron integrase expression in biofilmsMBio7e00868-16201610.1128/mBio.00868-16Search in Google Scholar

Suh S-J., Silo-Suh L., Woods D.E., Hassett D.J., West S.E.H., Ohman D.E.: Effect of rpoS mutation on the stress response and expression of virulence factors in Pseudomonas aeruginosa. J. Bacteriol. 181, 3890–3897 (1999)SuhS-J.Silo-SuhL.WoodsD.E.HassettD.J.WestS.E.H.OhmanD.E.Effect of rpoS mutation on the stress response and expression of virulence factors in Pseudomonas aeruginosaJ. Bacteriol18138903897199910.1128/JB.181.13.3890-3897.1999Search in Google Scholar

Taylor C.M., Beresford M., Epton H.A.S., Sigee D.C., Shama G., Andrew P.W., Roberts I.S.: Listeria monocytogenes relA and hpt mutants are impaired in surface-attached growth and virulence. J. Bacteriol. 184, 621–628 (2002)TaylorC.M.BeresfordM.EptonH.A.S.SigeeD.C.ShamaG.AndrewP.W.RobertsI.S.Listeria monocytogenes relA and hpt mutants are impaired in surface-attached growth and virulenceJ. Bacteriol184621628200210.1128/JB.184.3.621-628.2002Search in Google Scholar

Trigui H., Dudyk P., Oh J., Hong J-I., Faucher S.P.: A regulatory feedback loop between RpoS and SpoT supports the survival of Legionella pneumophila in water. Appl. Environ. Microbiol. 81, 918–928 (2015)TriguiH.DudykP.OhJ.HongJ-I.FaucherS.P.A regulatory feedback loop between RpoS and SpoT supports the survival of Legionella pneumophila in waterAppl. Environ. Microbiol81918928201510.1128/AEM.03132-14Search in Google Scholar

Van Delden C., Comte R., Bally M.: Stringent response activates quorum sensing and modulates cell density-dependent gene expression in Pseudomonas aeruginosa. J. Bacteriol. 183, 5376–5384 (2001)Van DeldenC.ComteR.BallyM.Stringent response activates quorum sensing and modulates cell density-dependent gene expression in Pseudomonas aeruginosaJ. Bacteriol18353765384200110.1128/JB.183.18.5376-5384.2001Search in Google Scholar

Vinella D., Albrecht C., Cashel M., D’Ari R.: Iron limitation induces SpoT-dependent accumulation of ppGpp in Escherichia coli. Mol. Microbiol. 56, 958–970 (2005)VinellaD.AlbrechtC.CashelM.D’AriR.Iron limitation induces SpoT-dependent accumulation of ppGpp in Escherichia coliMol. Microbiol56958970200510.1111/j.1365-2958.2005.04601.xSearch in Google Scholar

Walker T.S., Bais H.P., Déziel E., Schweizer H.P., Rahme L.G., Fall R., Vivanco J.M.: Pseudomonas aeruginosa-plant root interactions. Pathogenicity, biofilm formation, and root exudation. Plant Physiol. 134, 320–331 (2004)WalkerT.S.BaisH.P.DézielE.SchweizerH.P.RahmeL.G.FallR.VivancoJ.M.Pseudomonas aeruginosa-plant root interactions. Pathogenicity, biofilm formation, and root exudationPlant Physiol134320331200410.1104/pp.103.027888Search in Google Scholar

Wang J.D., Sanders G.M., Grossman A.D.: Nutritional control of elongation of DNA replication by (p)ppGpp. Cell, 128, 865–875 (2007)WangJ.D.SandersG.M.GrossmanA.D.Nutritional control of elongation of DNA replication by (p)ppGppCell128865875200710.1016/j.cell.2006.12.043Search in Google Scholar

Wendrich T.M., Blaha G., Wilson D.N., Marahiel M.A., Nierhaus K.H.: Dissection of the mechanism for the stringent factor RelA. Mol. Cell, 10, 779–788 (2002)WendrichT.M.BlahaG.WilsonD.N.MarahielM.A.NierhausK.H.Dissection of the mechanism for the stringent factor RelAMol. Cell10779788200210.1016/S1097-2765(02)00656-1Search in Google Scholar

Winzer K., Williams P.: Quorum sensing and the regulation of virulence gene expression in pathogenic bacteria. Int. J. Med. Microbiol. 291, 131–143 (2001)WinzerK.WilliamsP.Quorum sensing and the regulation of virulence gene expression in pathogenic bacteriaInt. J. Med. Microbiol291131143200110.1078/1438-4221-0011011437336Search in Google Scholar

Zhang H-B., Wang C., Zhang L-H.: The quormone degredation system of Agrobacterium tumefaciens is regulated by starvation signal and stress alarmone (p)ppGpp. Mol. Microbiol. 52, 1389–1401 (2004)ZhangH-B.WangC.ZhangL-H.The quormone degredation system of Agrobacterium tumefaciens is regulated by starvation signal and stress alarmone (p)ppGppMol. Microbiol5213891401200410.1111/j.1365-2958.2004.04061.x15165241Search in Google Scholar

Zulianello L., Canard C., Köhler T., Caille D., Lacroix J-S., Meda P.: Rhamnolipids are virulence factors that promote early infiltration of primary human airway epithelia by Pseudomonas aeruginosa. Infect. Immun. 74, 3134–3147 (2006)ZulianelloL.CanardC.KöhlerT.CailleD.LacroixJ-S.MedaP.Rhamnolipids are virulence factors that promote early infiltration of primary human airway epithelia by Pseudomonas aeruginosaInfect. Immun7431343147200610.1128/IAI.01772-05147929216714541Search in Google Scholar

Zuo Y., Wang Y., Steitz T.A.: The mechanism of E. coli RNA polymerase regulation by ppGpp is suggested by the structure of their complex. Mol. Cell, 50, 430–436 (2013)ZuoY.WangY.SteitzT.A.The mechanism of E. coli RNA polymerase regulation by ppGpp is suggested by the structure of their complexMol. Cell50430436201310.1016/j.molcel.2013.03.020367772523623685Search in Google Scholar

eISSN:
2545-3149
Languages:
English, Polish
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Microbiology and Virology