1. bookVolume 57 (2018): Issue 4 (January 2018)
Journal Details
License
Format
Journal
eISSN
2545-3149
First Published
01 Mar 1961
Publication timeframe
4 times per year
Languages
English, Polish
access type Open Access

FROM A COMMENSAL TO A PATHOGEN – TWO FACES OF STAPHYLOCOCCUS EPIDERMIDIS

Published Online: 26 Feb 2022
Volume & Issue: Volume 57 (2018) - Issue 4 (January 2018)
Page range: 338 - 347
Received: 01 May 2018
Accepted: 01 Aug 2018
Journal Details
License
Format
Journal
eISSN
2545-3149
First Published
01 Mar 1961
Publication timeframe
4 times per year
Languages
English, Polish
Abstract

Staphylococcus epidermidis is a commensal organism and the most abundant constituent of the healthy human skin and mucous membranes micrbiota. It is well adapted to colonize and evade human antimicrobial barriers. Staphylococcus epidermidis not only competes with potentially harmful pathogens, but also produces a plethora of proteins supporting host natural defenses. At the same time, S. epidermidis is an opportunistic pathogen recognised as one of the leading causes of healthcare-associated infections. S. epidermidis is mainly responsible for bloodstream infections and other biomedical device-related infections. Hospital strains of S. epidermidis form protective biofilm and are characterised with antibiotic resistance.

1. Introduction. 2. Staphylococcus epidermidis as a commensal organism. 2.1. Origin of S. epidermidis. 2.2. Human skin as S. epidermidisenvironment. 2.3. Adaptation mechanisms of S. epidermidis. 2.4. Mechanisms of supporting skin’s antimicrobial defences. 2.5. Influence on activity of host cells. 3. S. epidermidis as a pathogen. 3.1. Biofilm and virulence factors. 4. Summary

Key words

Słowa kluczowe

Agarwal S., Sharma G., Dang S., Gupta S., Gabrani R.: Antimicrobial peptides as anti-infectives against Staphylococcus epidermidis. Med. Princ. Pract.25, 301–308 (2016)10.1159/000443479558840726684017Search in Google Scholar

Asaad A.M., Qureshib M.A., Hasanc S.M.: Clinical significance of coagulase-negative staphylococci isolates from nosocomial bloodstream infections. Infect. Dis.48, 356–360 (2016)10.3109/23744235.2015.112283326666168Search in Google Scholar

Barbier F., Ruimy R. i wsp.: Methicillin-resistant coagulase-negative staphylococci in the community: high homology of SCCmec IV between Staphylococcus epidermidis and major clones of methicillin-resistant Staphylococcus aureus. J. Infect. Dis.15, 270–281 (2010)Search in Google Scholar

Bastos M.C., Ceotto H., Coelho M.L., Nascimento J.S.: Staphylococcal antimicrobial peptides: relevant properties and potential biotechnological applications. Curr. Pharm. Biotechnol.10, 38–61 (2009)10.2174/13892010978704858019149589Search in Google Scholar

Becker K., Heilmann C., Peters G.: Coagulase-negative staphylococci. Clin. Microbiol. Rev.27, 870–926 (2014)10.1128/CMR.00109-13418763725278577Search in Google Scholar

Biasucci G., Benenati B., Morelli L., Bessi E., Boehm G.: Cesarean delivery may affect the early biodiversity of intestinal bacteria. J. Nutr.138, 1796–1800 (2008)10.1093/jn/138.9.1796S18716189Search in Google Scholar

Bierbaum G., Gotz F., Peschel A., Kupke T., van de Kamp M., Sahl H.G.: The biosynthesis of the lantibiotics epidermin, galli-dermin, Pep5 and epilancin K7. Antonie van Leeuwenhoek, 69, 119–127 (1996)10.1007/BF003994178775972Search in Google Scholar

Bojar R.A., Holland K.T.: Review: the human cutaneous microflora and factors controlling colonisation. World J. Microb. Biot.18, 889–903 (2002)10.1023/A:1021271028979Search in Google Scholar

Borre Y.E., Moloney R.D., Clarke G., Dinan T.G., Cryan J.F.: The impact of microbiota on brain and behavior: mechanisms& therapeutic potential. Adv. Exp. Med. Biol.817, 373–403 (2014)10.1007/978-1-4939-0897-4_1724997043Search in Google Scholar

Cayley S., Lewis B.A., Record M.T.: Origins of the osmoprotective properties of betaine and proline in Escherichia coli K-12. J. Bacteriol.174, 1586–1595 (1992)10.1128/jb.174.5.1586-1595.19922065541537801Search in Google Scholar

Cerca N., Jefferson K.K., Oliveira R., Pier G.B., Azeredo J.: Comparative antibody-mediated phagocytosis of Staphylococcus epidermidis cells grown in a biofilm orinthe planktonic state. Infect. Immun.74, 4849–4855 (2006)10.1128/IAI.00230-06153962516861673Search in Google Scholar

Chamberlain N.R., Brueggemann S.A.: Characterisation and expression of fatty acid modifying enzyme produced by Staphylococcus epidermidis. J. Med. Microbiol.46, 693–697 (1997)10.1099/00222615-46-8-693Search in Google Scholar

Chen H.W., Liu P.F., Liu Y.T., Kuo S., Zhang X.Q., Schooley R.T., Rohde H., Gallo R.L., Huang C.M.: Nasal commensal Staphylococcus epidermidiscounteracts influenza virus. Sci. Rep. 6, 278–279 (2016)Search in Google Scholar

Cheung G.Y.C., Joo H.-S., Chatterjee S.S., Otto M.: Phenol-soluble modulins – critical determinants of staphylococcal virulence. FEMS Microbiol. Rev. 38, 698–719 (2014)Search in Google Scholar

Cheung G.Y., Rigby K., Wang R., Queck S.Y., Braughton K.R., Whitney A.R., Teintze M., DeLeo F.R., Otto M.: Staphylococcus epidermidis strategies to avoid killing by human neutrophils. Plos Pathog.6, e1001133 (2010)10.1371/journal.ppat.1001133Search in Google Scholar

Christner, M., Rohde i wsp.: The giant extracellular matrix-binding protein of Staphylococcus epidermidis mediates biofilm accumulation and attachment to fibronectin. Mol. Microbiol. 75, 187–207 (2010)Search in Google Scholar

Chu V.H., Fowler V.G.J. i wsp.: Emergence of coagulase-negative staphylococci as a cause of native valve endocarditis. Clin. Infect. Dis.46, 232–242 (2008)Search in Google Scholar

Cogen A.L., Gallo R.L. i wsp.: Selective antimicrobial action is provided by phenol-soluble modulins derived from Staphylococcus epidermidis, a normal resident of the skin. J. Invest. Dermatol.130, 192–200 (2010)Search in Google Scholar

Collado M.C., Rautava S., Aakko J., Isolauri E., Salminen S.: Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Scientific Reports, 6, DOI: 10.1038/srep23129 (2016)10.1038/srep23129Search in Google Scholar

Costello E.K., Lauber C.L., Hamady M., Fierer N., Gordon J.I., Knight R.: Bacterial community variation in human body habitats across space and time. Science, 326, 1694–1697 (2009)10.1126/science.1177486Search in Google Scholar

Crass B.A., Bergdoll M.S.: Involvement of coagulase-negative staphylococci in toxic shock syndrome. J. Clin. Microbiol.23,43–45 (1986)10.1128/jcm.23.1.43-45.1986Search in Google Scholar

Cretenet M., Even S., Le Loir Y.: Unveiling Staphylococcus aureusenterotoxin production in dairy products: a review of recent advances to face new challenges. Dairy Sci. Technol. 91, 127–150 (2011)Search in Google Scholar

Cunha M.L., Calsolari R.A.O.: Toxigenicity in Staphylococcus aureus and coagulase-negative staphylococci: epidemiological and molecular aspects. Microbiol. Insights, 1, 13–24 (2008)Search in Google Scholar

Cunha M.L., Calsolari R.A.O., Araújo Jr.J.P.: Detection of enterotoxin and toxic shock syndrome toxin 1 genes in Staphylococcus, with emphasis on coagulase-negative staphylococci. Microb. Immun. 51, 381–390 (2007)Search in Google Scholar

Dasanayake A.P., Li Y., Wiener H., Ruby J.D., Lee M.J.: Salivary Actinomyces naeslundii genospecies 2 and Lactobacillus caseilevels predict pregnancy outcomes. J. Periodontol.76, 171–177 (2005)10.1902/jop.2005.76.2.171Search in Google Scholar

De N., Godlove M.: Prevalence of S. aureus and S. epidermidisamong patients with indwelling catheters and their antibiogram using some commonly used antibiotics.J. Am. Sci.6, 515–520 (2010)Search in Google Scholar

Diep B.A., Perdreau-Remington F. i wsp.: Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. Lancet, 367, 731–739 (2006)10.1016/S0140-6736(06)68231-7Search in Google Scholar

Domingo P., Fontanet A.: Management of complications associated with totally implantable ports in patients with AIDS. AIDS Patient Care STDS, 15: 7–13 (2001)10.1089/10872910146005611177583Search in Google Scholar

Dominguez-Bello M.G., Costello E.K., Contreras M., Magris M., Hidalgo G., Fierer N., Knight R.: Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl. Acad. Sci. 107, 11971–11975 (2010)Search in Google Scholar

Drake D.R., Brogden K.A., Dawson D.V., Wertz P.W.: Thematic review series: skin lipids. Antimicrobial lipids at the skin surface. J. Lipid Res.49, DOI: 10.1194/jlr.R700016-JLR200 (2008)10.1194/jlr.R700016-JLR20017906220Search in Google Scholar

Eggesbø M., Moen B., Peddada S., Baird D., Rugtveit J., Midtvedt T., Bushel P.R., Sekelja M., Rudi K.: Development of gut microbiota in infants not exposed to medical interventions. APMIS, 119, DOI: 10.1111/j.1600-0463.2010.02688.x (2011)10.1111/j.1600-0463.2010.02688.x305849221143523Search in Google Scholar

Ekkelenkamp M.B., Hanssen M., Danny Hsu S.T., de Jong A., Milatovic D., Verhoef, J., van Nuland N.A.: Isolation and structural characterization of epilancin 15X, a novel lantibiotic from a clinical strain of Staphylococcus epidermidis. FEBS Lett.579, 1917–1922 (2005)10.1016/j.febslet.2005.01.08315792796Search in Google Scholar

Franca A., Carvalhais V., Vilanova M., Pier G.B., Cerca N.: Characterization of an in vitro fed-batch model to obtain cells released from S. epidermidis biofilms. AMB Express, 6, DOI: 10.1186/s13568-016-0197-9 (2016)10.1186/s13568-016-0197-9480182327001438Search in Google Scholar

Gallo R.L., Hooper L.V.: Epithelial antimicrobial defence of the skin and intestine. Nat. Rev. Immunol. 12, 503–516 (2013)Search in Google Scholar

Gallo R.L., Nakatsuji T.: Microbial symbiosis with the innate immune defense system of the skin. J. Invest. Dermatol. 131, 1974–1980 (2011)Search in Google Scholar

Ghassemi A., Farhangi H., Badiee Z., Banihashem A., Mosaddegh M.R.: Evaluation of nosocomial infection in patients at hematology-oncology ward of Dr. Sheikh children’s hospital. Iran. J. Ped. Hematol. Oncol.5, 179–185 (2015)Search in Google Scholar

Grice E.A., Segre J.A.: The skin microbiome. Nat. Rev. Microbiol.9, 244–253 (2011)Search in Google Scholar

Grice E.A., Segre J.A. i wsp.: Topographical and temporal diversity of the human skin microbiome. Science, 29, 1190–1192 (2009)Search in Google Scholar

Gristina A.: Biomaterial-centered infection: microbial adhesion versus tissue integration. Science,237, 1588–1595 (1987)10.1126/science.36292583629258Search in Google Scholar

Hidron A.I., Edwards J.R., Patel J., Horan T.C., Sievert D.M., Pollock D.A., Fridkin S.K.: Antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infect. Control Hosp. Epidemiol. 29, 996–1011 (2008)10.1086/59186118947320Search in Google Scholar

Hirai Y.: Survival of bacteria under dry conditions; from a viewpoint of nosocomial infection. J. Hosp. Infect. 19, 191–200 (1991)Search in Google Scholar

Holland D.B., Bojar R.A., Farrar M.D., Holland K.T.: Differential innate immune responses of a living skin equivalent model colonized by Staphylococcus epidermidis or Staphylococcus aureus. FEMS Microbiol. Lett.290, 149–155 (2009)10.1111/j.1574-6968.2008.01402.x19054079Search in Google Scholar

Iwase T., Uehara Y., Shinji H., Tajima A., Seo H., Takada K., Agata T., Mizunoe Y.: Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature, 465, 346–349 (2010)10.1038/nature0907420485435Search in Google Scholar

Janek D., Zipperer A., Kulik A., Krismer B., Peschel A.: High frequency and diversity of antimicrobial activities produced by nasal Staphylococcus strains against bacterial competitors. Plos Pathog.12, e1005812 (2016)10.1371/journal.ppat.1005812497397527490492Search in Google Scholar

Jiménez E., Marin M.L., Martin R., Odriozola J.M., Olivares M., Xaus J., Fernández L., Rodríguez J.M.: Is meconium from healthy newborns actually sterile? Res. Microbiol.159, 187–193 (2008a)10.1016/j.resmic.2007.12.00718281199Search in Google Scholar

Jimenez E., Delgado S., Maldonado A., Arroyo R., Albujar M., Garcia N., Jariod M., Fernandez L., Gomez A., Rodriguez J.M.: Staphylococcus epidermidis: a differential trait of the fecal microbiota of breast-fed infants. BMC Microbiol. 8, DOI: 10.1186/ 1471-2180-8-143 (2008b)10.1186/1471-2180-8-143255160918783615Search in Google Scholar

Kalliomäki M., Collado M.C., Salminen S., Isolauri E.: Early differences in fecal microbiota composition in children may predict overweight. Am. J. Clin. Nutr.87, 534–538 (2008)10.1093/ajcn/87.3.53418326589Search in Google Scholar

Keyworth, N., Millar, M.R, Holland, K.T.: Development of cutaneous microflora in premature neonates. Arch. Dis. Child.67, 797–801 (1992)Search in Google Scholar

Kocianova S., Vuong C., Yao Y., Voyich J.M., Fischer E.R., DeLeo F.R., Otto M.: Key role of poly-gamma-DL-glutamic acid in immune evasion and virulence of Staphylococcus epidermidis. J. Clin. Invest. 115, 688–694 (2005)10.1172/JCI200523523Search in Google Scholar

Kristian S., Birkenstock T., Sauder U., Mack D., Gotz F., Landmann R.: Biofilm formation induces C3a release and protects Staphylococcus epidermidis from IgG and complement deposition and from neutrophil-dependent killing. J. Infect. Dis. 197, 1028–1035 (2008)Search in Google Scholar

Kunin C.M., Rudy J.: Effect of NaCl-induced osmotic stress on intracellular concentrations of glycine betaine and potassium in Escherichia coli, Enterococcus faecalis, and staphylococci. J. Lab. Clin. Med. 118, 217–224 (1991)Search in Google Scholar

Lai Y., Cogen A.L., Radek K.A., Park H.J., Macleod D.T., Leichtle A., Ryan A.F., Di Nardo A., Gallo R.L.: Activation of TLR2 by a small molecule produced by Staphylococcus epidermidisincreases antimicrobial defense against bacterial skin infections. J. Invest. Dermatol.130, 2211–2221 (2010)10.1038/jid.2010.123292245520463690Search in Google Scholar

Lai Y., Gallo R.L. i wsp.: Commensal bacteria regulate Toll-like receptor 3-dependent inflammation after skin injury. Nat Med.15, 1377–1382 (2009)Search in Google Scholar

Lai Y., Villaruz A.E., Li M., Cha D.J., Sturdevant D.E., Otto M.: The human anionic antimicrobial peptide dermcidin induces proteolytic defence mechanisms in staphylococci. Mol. Microbiol.63, 497–506 (2007)10.1111/j.1365-2958.2006.05540.x17176256Search in Google Scholar

Le K.Y., Otto M.: Quorum-sensing regulation in staphylococci – an overview. Front. Microbiol.6, DOI: 10.3389/fmicb.2015.01174 (2015)10.3389/fmicb.2015.01174462187526579084Search in Google Scholar

Li M., Lai Y., Villaruz A.E., Cha D.J., Sturdevant D.E., Otto M.: Gram-positive three-component antimicrobial peptide-sensing system. Proc. Natl. Acad. Sci. USA, 104, 9469–9474 (2007)10.1073/pnas.0702159104189051817517597Search in Google Scholar

Lina G., Fleer A., Etienne J., Greenland T.B., Vandenesch F.: Coagulase-negative staphylococci isolated from two cases of toxic shock syndrome lack superantigenic activity, but induce cytokine production. FEMS Immunol. Med. Microbiol. 13, 81–86 (1996)Search in Google Scholar

Lindgren J.K., Fey P.D. i wsp.: Arginine deiminase in Staphylococcus epidermidis functions to augment biofilm maturation through pH homeostasis. J. Bacteriol. 196, 2277–2289 (2014)Search in Google Scholar

Madhusoodanan J., Gill, S.R. i wsp.: An enterotoxin-bearing pathogenicity island in Staphylococcus epidermidis. J. Bacteriol.193, 1854–1862 (2011)Search in Google Scholar

Majchrzak K., Mierzwińska-Nastalska E., Chmura A., Kwiatkowski A., Paczek L., Młynarczyk G., Szymanek-Majchrzak K.: Comparison of staphylococcal flora in denture plaque and the surface of the pharyngeal mucous membrane in kidney transplant recipients. Transplant. Proc.48, 1590–1597 (2016)10.1016/j.transproceed.2016.03.01627496452Search in Google Scholar

Martin R., Knol J.: Early-life events, including mode of delivery and type of feeding, siblings and gender, shape the developing gut microbiota. Plos One, 11, e0158498 (2016)10.1371/journal.pone.0158498492881727362264Search in Google Scholar

McCann M.T., Gilmore B.F., Gorman S.P.: Staphylococcus epidermidis device-related infections: pathogenesis and clinical management. J Pharm. Pharmacol.60, 1551–1571 (2008)10.1211/jpp/60.12.000119000360Search in Google Scholar

Miragaia M., Diep B.A. i wsp.: Genetic diversity of arginine catabolic mobile element in Staphylococcus epidermidis. Plos One,6, e7722 (2009)10.1371/journal.pone.0007722276882019893740Search in Google Scholar

Miragaia M., Thomas J.C., Couto I., Enright M.C., de Lencastre H.: Inferring a population structure for Staphylococcus epidermidis from multilocus sequence typing data. J. Bacteriol.189, 2540 –2552 (2007)10.1128/JB.01484-06189936717220222Search in Google Scholar

Montanaro L., Speziale P., Campoccia D., Ravaioli S., Cangini I., Pietrocola G., Giannini S., Arciola C.: Scenery of Staphylococcusimplant infections in orthopedics. Future Microbiol.6, 1329– 1349 (2011)10.2217/fmb.11.11722082292Search in Google Scholar

Nakatsuji T., Gallo R.L. i wsp.: A commensal strain of Staphylococcus epidermidis protects against skin neoplasia. Sci. Adv.4, DOI: 10.1126/sciadv.aao4502 (2018)10.1126/sciadv.aao4502583400429507878Search in Google Scholar

Oh J., Byrd A.L., Deming C., Conlan S., NISC Comparative Sequencing Program, Kong H.H., Segre J.A.: Biogeography and individuality shape function in the human skin metagenome. Nature, 514, 59–64 (2014)10.1038/nature13786418540425279917Search in Google Scholar

Otto M.: Staphylococcal infections: mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity. Annu. Rev. Med. 64, 175–188 (2013)10.1146/annurev-med-042711-14002322906361Search in Google Scholar

Otto M.: Staphylococcus epidermidis– the ‘accidental’ pathogen. Nat. Rev. Microbiol.7, 555–567 (2009a)10.1038/nrmicro2182280762519609257Search in Google Scholar

Otto M.: Bacterial sensing of antimicrobial peptides. Contrib. Microbiol. 16, 136–149 (2009b)10.1159/000219377277753019494583Search in Google Scholar

Overturf G.D., Sherman M.P., Scheifele D.W., Wong L.C.: Neonatal necrotizing enterocolitis associated with delta toxin-producing methicillin-resistant Staphylococcus aureus. Pediatr. Infect. Dis. J.9, 88–91 (1990)10.1097/00006454-199002000-000052314957Search in Google Scholar

Park Y.J., Lee H.K.: The role of skin and orogenital microbiota in protective immunity and chronic immune-mediated inflammatory disease. Front. Immunol.10, DOI: 10.3389/fimmu.2017 (2018)Search in Google Scholar

Park B., Iwase T., Liu G.Y.: Intranasal application of S. epidermidis prevents colonization by methicillin-resistant Staphylococcus aureus in mice. Plos One, 6, e25880 (2011)10.1371/journal.pone.0025880318781321998712Search in Google Scholar

Peschel A., Otto M.: Phenol-soluble modulins and staphylococcal infection. Nat. Rev. Microbiol. 11, 667–673 (2013)Search in Google Scholar

Peterson, J., S., Guyer M. i wsp.: The NIH Human Microbiome Project. Genome Res.19, 2317–2323 (2009)Search in Google Scholar

Pinheiro L., Brito C.I., de Oliveira A., Martins P.Y., Pereira V.C., da Cunha M.L.: Staphylococcus epidermidis and Staphylococcus haemolyticus: molecular detection of cytotoxin and enterotoxin genes. Toxins,7, 3688–3699 (2015)10.3390/toxins7093688459165826389954Search in Google Scholar

Rodríguez J.M., Collado M.C. i wsp.: The composition of the gut microbiota throughout life, with an emphasis on early life. Microb. Ecol. Health Dis. 2, DOI: 10.3402/mehd.v26.26050 (2015)10.3402/mehd.v26.26050431578225651996Search in Google Scholar

Rohde H., Burdelski C., Bartscht K., Hussain M., Buck F., Horstkotte M.A., Knobloch J.K., Heilmann C., Herrmann M., Mack D.: Induction of Staphylococcus epidermidis biofilm formation via proteolytic processing of the accumulation-associated protein by staphylococcal and host proteases. Mol. Microbiol. 55, 1883–1895 (2005)Search in Google Scholar

Rupp M.E., Archer G.L.: Coagulase-negative staphylococci: pathogens associated with medical progress. Clin. Infect. Dis.19, 231–245 (1994)10.1093/clinids/19.2.231Search in Google Scholar

Sandiford S., Upton M.: Identification, characterization, and recombinant expression of epidermicin N101, a novel unmodified bacteriocin produced by Staphylococcus epidermidis that displays potent activity against staphylococci. Antimicrol. Agents Chemother.56, 1539–1547 (2012)10.1128/AAC.05397-11Search in Google Scholar

Scharschmidt T.C.: Establishing tolerance to commensal skin bacteria: timing is everything. Dermatol. Clin. 35, DOI: 10.1016/j.det.2016.07.007 (2017)10.1016/j.det.2016.07.007Search in Google Scholar

Scharschmidt T.C., Fischbach M.A.: What lives on our skin: ecology, genomics and therapeutic opportunities of the skin microbiome. Drug Discov. Today Dis. Mech.1, 83–89 (2013)10.1016/j.ddmec.2012.12.003Search in Google Scholar

Scheifele D.W., Bjornson G.L., Dyer R.A., Dimmick J.E.: Delta-like toxin produced by coagulase-negative staphylococci is associated with neonatal necrotizing enterocolitis. Infect. Immun. 55, 2268–2273 (1987)Search in Google Scholar

Sharon I., Morowitz M.J., Thomas B.C., Costello E.K., Relman D.A., Banfield J.F.: Time series community genomics analysis reveals rapid shifts in bacterial species, strains, and phage during infant gut colonization. Genome Res.23, 111–120 (2013)10.1101/gr.142315.112Search in Google Scholar

Sugimoto S., Iwamoto T., Takada K., Okuda K., Tajima A., Iwase T., Mizunoe Y.: Staphylococcus epidermidis Esp degrades specific proteins associated with Staphylococcus aureus biofilm formation and host-pathogen interaction. J. Bacteriol.195, 1645–1655 (2013)10.1128/JB.01672-12Search in Google Scholar

Thomas S., Prendergast G.C. i wsp.: The host microbiome regulates and maintains human health: a primer and perspective for non microbiologists. Cancer Res.15, 1783–1812 (2017)Search in Google Scholar

Tormo M.A., Knecht E., Gotz F., Lasa I., Penades J.R.: Bap-dependent biofilm formation by pathogenic species of Staphylococcus: evidence of horizontal gene transfer? Microbiology,151, 2465–2475 (2005)10.1099/mic.0.27865-0Search in Google Scholar

Vandecandelaere I., Van Nieuwerburgh F., Deforce D., Coenye T.: Metabolic activity, urease production, antibiotic resistance and virulence in dual species biofilms of Staphylococcus epidermidisand Staphylococcus aureus. Plos One,12, e0172700 (2017)10.1371/journal.pone.0172700Search in Google Scholar

Vasconcelos N.G., Cunha M.L.R.: Staphylococcal enterotoxins: molecular aspects and detection methods. J. Public Health Epidemiol. 2, 29–42 (2010)Search in Google Scholar

Vuong C., Voyich J.M., Fischer E.R., Braughton K.R., Whitney A.R., DeLeo F.R., Otto M.: Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell. Microbiol.6, 269–275 (2004)10.1046/j.1462-5822.2004.00367.xSearch in Google Scholar

Vuong C., Otto M.: Staphylococcus epidermidis infections. Microbes Infect.4, 481–489 (2002)10.1016/S1286-4579(02)01563-0Search in Google Scholar

Wang R., Khan B.A., Cheung G.Y, Bach T.H., Jameson-Lee M., Kong K.F., Queck S.Y., Otto M.: Staphylococcus epidermidissurfactant peptides promote biofilm maturation and dissemination of biofilm-associated infection in mice. J. Clin. Invest. 121, 238–248 (2011)Search in Google Scholar

Wang R, Otto M. i wsp.:. Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat. Med.13, 1510–1514 (2007)Search in Google Scholar

Whitchurch C.B., Tolker-Nielsen T., Ragas P.C., Mattick J.S.: Extracellular DNA required for bacterial biofilm formation. Science,295, 1487 (2002)10.1126/science.295.5559.148711859186Search in Google Scholar

Widerström M., Wiström J., Edebro H., Marklund E., Backman M., Lindqvist P., Monsen T.: Colonization of patients, healthcare workers, and the environment with healthcare-associated Staphylococcus epidermidis genotypes in an intensive care unit: a prospective observational cohort study. BMC Infect. Dis.DOI: 10.1186/s12879-016-2094-x (2016)10.1186/s12879-016-2094-x514892027938344Search in Google Scholar

Widerström M., McCullough C.A., Coombs G.W., Monsen T., Christiansen K.J.: A multidrug-resistant Staphylococcus epidermidis clone (ST2) is an ongoing cause of hospital-acquired infection in a Western Australian Hospital. J. Clin. Microbiol.50, 2147–2151 (2012)10.1128/JCM.06456-11337215522442320Search in Google Scholar

Widerstrom M., Monsen T., Karlsson C., Wistrom J.: Molecular epidemiology of meticillin-resistant coagulase-negative staphylococci in a Swedish county hospital: evidence of intra- and interhospital clonal spread. J. Hosp. Infect.64, 177–183 (2006)10.1016/j.jhin.2006.06.01316911846Search in Google Scholar

Wu H., Moser C., Wang H.Z., Høiby N., Song Z.J.: Strategies for combating bacterial biofilm infections. Int. J. Oral Sci. 7, DOI: 10.1038/ijos.2014.65 (2014)10.1038/ijos.2014.65481753325504208Search in Google Scholar

Ziebuhr W., Hennig S., Eckart M., Kranzler H., Batzilla C., Kozitskaya S.: Nosocomial infections by Staphylococcus epidermidis: how a commensal bacterium turns into a pathogen. Int. J. Antimicrob. Ag.28, 14–20 (2006)10.1016/j.ijantimicag.2006.05.01216829054Search in Google Scholar

Ziebuhr W., Heilmann C., Götz F., Meyer P., Wilms K., Straube E., Hacker J.: Detection of the intercellular adhesion gene cluster (ica) and phase variation in Staphylococcus epidermidis blood culture strains and mucosal isolates. Infect. Immun.65, 890–896 (1997)10.1128/iai.65.3.890-896.19971750659038293Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo