1. bookVolume 57 (2018): Issue 3 (January 2018)
Journal Details
First Published
01 Mar 1961
Publication timeframe
4 times per year
English, Polish
access type Open Access


Published Online: 26 Feb 2022
Volume & Issue: Volume 57 (2018) - Issue 3 (January 2018)
Page range: 278 - 285
Received: 01 May 2018
Accepted: 01 Jul 2018
Journal Details
First Published
01 Mar 1961
Publication timeframe
4 times per year
English, Polish

Modern technologies of bioethanol production require distillery yeast characterized by thermotolerance, osmotolerance and increased resistance to secondary metabolites. To date, no strains have been observed in nature which possess all of the above-mentioned characteristics. For many years, intensive research has been carried out to improve the technological properties of industrial strains. A number of methods have been developed to allow genetic improvement of distillery yeasts. One of the most promising and effective methods is genome shuffling, allowing the creation of hybrids whose genome is a combination of large DNA fragments derived from strains with distinct phenotypic traits. Genome shuffling creates a chance that the new strain will have valuable functional genes, including their full operons. This, in turn, increases the chance of a long-term maintenance of beneficial technological features by the obtained hybrids.

1. Introduction. 2. Yeast Saccharomyces cerevisiae. 2.1. Yeast genome. 2.2. Role of Saccharomyces cerevisiae yeast in the bioethanol production. 3. Pathways of genetic improvement. 4. Methods of genetic improvement. 5. Genome shuffling. 5.1. Improvement of Saccharomyces cerevisiae yeast strains by genome shuffling method. 6. Conclusion

Key words

Słowa kluczowe

Adrio J.L., Demain A.L.: Genetic improvement of processes yielding microbial products. FEMS Microbiol. Rev. 30, 187–214 (2006)Search in Google Scholar

Babik W.: Ewolucja genomów i powstawanie nowych genów. Kosmos, Problemy Nauk Biologicznych, 58, 385–393 (2009)Search in Google Scholar

Bai F.W., Anderson W.A., Moo-Young A.: Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol. Adv. 26,89–105 (2008)Search in Google Scholar

Bajwa P.K., Pinel D., Martin V.J.J., Trevors J.T., Lee H.: Strain improvement of the pentose-fermenting yeast Pichia stipitis by genome shuffling. J. Microbiol. Methods. 81, 179–186 (2010)Search in Google Scholar

Bekker V., Dodd A., Brady D., Rumbold K.: Tools for metabolic engineering in Streptomyces. Bioengineered. 5, 293–299 (2014)10.4161/bioe.29935415649025482230Search in Google Scholar

Białas W., Wojciechowska D., Szymanowska D., Grajek W.: Optymalizacja procesu jednoczesnej hydrolizy i fermentacji natywnej skrobi metodą powierzchni odpowiedzi. Biotechnologia, 4, 183–199 (2009)Search in Google Scholar

Biot-Pelletier D., Martin V.J.J.: Evolutionary engineering by genome shuffling. Appl. Microbiol. Biotechnol. 98, 3877–3887 (2014)Search in Google Scholar

Bonin S.: Tradycyjne metody modyfikacji drożdży (w) Zastosowanie wybranych drobnoustrojów w biotechnologii żywności, red. M. Gniewosz, E. Lipińska, Wydawnictwo SGGW (wyd. 1), Warszawa, 2013, s. 282–301Search in Google Scholar

Brown T.A.: Genomy. PWN Wyd. Naukowe, Warszawa, 2001, s. 472Search in Google Scholar

Chmiel A.: Biotechnologia podstawy mikrobiologiczne i biochemiczne. Wyd. Naukowe PWN (wyd. 2), Warszawa, 1994, s. 364Search in Google Scholar

Choudhary J., Singh S., Nain L.: Thermotolerant fermenting yeasts for simultaneous saccharification fermentation of lignocellulosic biomass. Electronic Biotechnol. 21, 82–92 (2016)10.1016/j.ejbt.2016.02.007Search in Google Scholar

Costa D.A., de Souza C.J.A., Costa P.S., Rodrigues M.Q.R.B., dos Santos A.F., Lopes M.R., Genier H.L.A., Silveira W.B., Fietto L.G. Physiological characterization of thermotolerant yeast for cellulosic ethanol production. Appl. Microbiol. Biotechnol. 98, 3829–3840 (2014)Search in Google Scholar

Demain i Báez-Vásquez Demain A.L., Báez-Vásquez M.A.: Biofuels of the Present and the Future (w) New and Future Developments in Catalysis: Catalytic Biomass Conversion, red. S.L. Suib, Elsevier, 2013, s. 325–37010.1016/B978-0-444-53878-9.00016-3Search in Google Scholar

Edgardo A., Parra C., Rodriguez M., Jaime B.: Selection of ther- motolerant yeast strains Saccharomyces cerevisiaefor bioethanol production. Enzyme Microb. Technol. 43, 120–123 (2008)Search in Google Scholar

Engel S.R., Cherry J.M. wsp.:The Reference Genome Sequence of Saccharomyces cerevisiae: Then and Now. G3-Genes Genom. Genet. 4, 389–398 (2014)Search in Google Scholar

Evans G.G., Furlong J.: Environmental Biotechnology: Theory and Application. John Wiley& Sons (wyd. 2), 2011, s. 11–48Search in Google Scholar

Fernandes i Murray Fernandes S., Murray P.: Metabolic engineering for improved microbial pentose fermentation. Bioeng Bugs. 1, 424–428 (2010)10.4161/bbug.1.6.12724305609421468211Search in Google Scholar

Fiedurek J.: Biologiczne podstawy procesów mikrobiologicznych (w) Podstawy biotechnologii przemysłowej, red. W. Bednarski, J. Fiedurek, Wydawnictwa Naukowo-Techniczne, Warszawa, 23007, s. 57–85Search in Google Scholar

Goffeau A., Oliver S.G. i wsp.: Life with 6000 genes. Science, 274, 563–567 (1996)Search in Google Scholar

Gong G., Ma L., Chen X.: Isolation and improvement of Saccharomyces cerevisiae for producing the distilled liquor. J. Chem. Pharm. Res. 6, 283–288 (2014)Search in Google Scholar

Gong J., Zheng H., Wu Z., Chen T., Zhao X.: Genome shuffling: Progress and applications for phenotype improvement. Bio technol. Adv. 27, 996–1005 (2009)Search in Google Scholar

Grajek W., Szymanowska D.: Stresy środowiskowe działające na drożdże Saccharomyces cerevisiae w procesie fermentacji etanolowej. Biotechnologia, 3, 46–63 (2008)Search in Google Scholar

Henderson C.M., Block D.E.: Examining the role of membrane lipid composition in determining the ethanol tolerance of Saccha romyces cerevisiae. Appl. Environ. Microbiol. 80, 2966– 2972 (2014)Search in Google Scholar

Klis F.M., Boorsma A., De Groot P.W.J.: Cell wall construction in Saccharomyces cerevisiae. Yeast,23, 185–202 (2006)10.1002/yea.134916498706Search in Google Scholar

Kroumov A.D., Modenes A.N., de Araujo Tait M.C.: Development of new unstructured model for simultaneous saccharification and fermentation of starch to ethanol by recombinant strain.Biochem. Eng. Journal. 28, 243–255 (2006)Search in Google Scholar

Kumari R., Pramanik K.: Improvement of multiple stress tolerance in yeast strain by sequential mutagenesis for enhanced bioethanol production. Biosci. Bioeng. 114, 622–629 (2012)Search in Google Scholar

Kunicka A., Rajkowska K.: Charakterystyka mikroorganizmów. Drożdże (w) Mikrobiologia techniczna. Mikroorganizmy i środowiska ich występowania (tom I), red. Z. Libudzisz, K. Kowal, Z. Żakowska, Wydawnictwo Naukowe PWN, Warszawa, 2010, s. 353Search in Google Scholar

Ledakowicz S.: Od inżynierii metabolicznej przez biologię systemów do inżynierii biologicznej. Inż. Ap. Chem. 48, 17–20 (2009)Search in Google Scholar

Levin D.E.: Regulation of Cell Wall Biogenesis in Saccharomyces cerevisiae: The cell wall integrity signaling pathway. Genetics. 189, 1145–1175 (2011)10.1534/genetics.111.128264324142222174182Search in Google Scholar

Lipińska E. Drożdże gorzelnicze i biosynteza etanolu (w) Zastosowanie wybranych drobnoustrojów w biotechnologii żywności, red. M. Gniewosz, E.Lipińska, Wydawnictwo SGGW (wyd. 1), Warszawa, 2013, s. 155–166Search in Google Scholar

Liu Z-H., Qin L., Zhu J-Q., Li B-Z. and Yuan Y-J.: Simultaneous saccharification and fermentation of steam-exploded corn stover at high glucan loading and high temperature. Biotechnol. Biofuels. 7,167 (2014)10.1186/s13068-014-0167-x426743925516770Search in Google Scholar

Mackiewicz P., Zakrzewska-Czerwińska J., Cebrat S.: Genomika – dziedzina wiedzy XXI wieku. Biotechnologia, 3, 7–21 (2005)Search in Google Scholar

Nicholl Nicholl D.S.T.: An introduction to genetic engineering, Combridge University Press (wyd. 3), s. 327 (2008)10.1017/CBO9780511800986Search in Google Scholar

Orlean P.: Architecture and Biosynthesis of the Saccharomyces cerevisiae. Cell Wall Genetics. 192, 775–818 (2012)Search in Google Scholar

Orosco F.L., Estrada S.M., Simbahan J.F., Alcantara V.A., Pajares I.G.: Genome shuffling for improved thermotolerance, ethanol tolerance and ethanol production of Saccharomyces cerevisiae 2013. Philippine Science Letters,10, 22–28 (2017)Search in Google Scholar

Parekh i in. Parekh S., Vinci V.A., Strobel R.J.: Improvement of microbial strains and fermentation processes. Appl. Microbiol. Biotechnol. 54, 287–301 (2000)Search in Google Scholar

Pereira F.B., Romanía A., Ruiz H.A., Teixeira J.A., Domingues L.: Industrial robust yeast isolates with great potential for fermentation of lignocellulosic biomass. Biores. Technol. 161, 192–199 (2014)Search in Google Scholar

Petri R., Schmidt-Dannert C.: Dealing with complexity: evolutionary engineering and genome shuffling. Curr. Opinion Biotechnol. 15, 298–304 (2004)10.1016/j.copbio.2004.05.00515296928Search in Google Scholar

Podgórska I., Solarska E.: Wykorzystanie drożdży Saccharomyces cerevisiae w zabezpieczaniu procesów fermentacyjnych. Przemysł Fermentacyjny i Owocowo-Warzywny, 3, doi:10.15199/64.2016.3.6 (2016)10.15199/64.2016.3.6Search in Google Scholar

Richard P., Verho R., Putkonen M., Londesborough J., Penttila M.: Production of ethanol from L-arabinose by Saccharomyces cerevisiae containing a fungal L-arabinose pathway. FEMS Yeast Res. 3, 185–189 (2003)10.1016/S1567-1356(02)00184-8Search in Google Scholar

Rubin-Pitel S.B., Chao C.M-H., Chen W., Zhao H.: Directed Evolution Tools in Bioproduct and Bioprocess Development (w) Bioprocessing for Value-Added Products from Renewable Resources, red. Yang S-T., Elsevier, 2007, s. 49–7210.1016/B978-044452114-9/50004-9Search in Google Scholar

Ruiz H.A., Silva D.P., Ruzene D.S., Lima L.F., Vicente A.A., Teixeira J.A.: Bioethanol production from hydrothermal pretreated wheat straw by a flocculating Saccharomyces cerevisiaestrain – Effect of process conditions. Fuel,95, 528–536 (2012)10.1016/j.fuel.2011.10.060Search in Google Scholar

Satyanarayana T., Kunze G.: Yeast biotechnology: diversity and applications, Springer Netherlands, 200910.1007/978-1-4020-8292-4Search in Google Scholar

Schlegel H.G.: Mikrobiologia ogólna, Wyd. Naukowe PWN, Warszawa, 2003Search in Google Scholar

Shi D.J., Wang C.L, Wang K.M.: Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. J. Ind. Microbiol. Biotechnol. 36, 139–47 (2009)Search in Google Scholar

Snoek T., Picca Nicolino M., Van den Bremt S., Mertens S., Saels V., Verplaetse A., Steensels J., Verstrepen KJ.: Large-scale robot-assisted genome shuffling yields industrial Saccharomyces cerevisiae yeasts with increased ethanol tolerance. Biotechnol. Biofuels. 26, 8–32 (2015)Search in Google Scholar

Spencer J., Phister T.G., Smart K.A., Greetham D.: Tolerance of pentose utilising yeast to hydrogen peroxide-induced oxidative stress. BMC Research Notes, 7, 151 (2014)10.1186/1756-0500-7-151400404324636079Search in Google Scholar

Steenles J., Snoek T., Meersman E., Picca Nicolino M., Voordeckers K., Verstrepen K.J.: Improving industrial yeast strains: exploiting natural and artificial diversity. FEMS Microbiol. Rev. 38, 47–995 (2014)Search in Google Scholar

Stephanopoulos G.N., Aristidou A.A., Nielsen J.: Metabolic Engineering: Principles and Methodologies, San Diego, Academic Press, 1998, s. 72510.1016/B978-012666260-3/50002-9Search in Google Scholar

Strąk E., Balcerek M.:Wybrane technologie wykorzystywane w przemyśle gorzelniczym, Acta Sci. Pol. Biotechnol. 14, 33–44 (2015)Search in Google Scholar

Sybirny i in. Sybirny W., Puchalski Cz., Sybirny A.: Metaboliczna inżynieria drobnoustrojów do konstruowania wydajnych producentów bioetanolu z lignocelulozy. Biotechnologia, 4, 38–54 (2007)Search in Google Scholar

Świątek M., Lewandowska M., Bednarski W.: Doskonalenie procesów biotechnologicznych stosowanych w produkcji etanolu II generacji z surowców lignocelulozowych. Postępy Nauk Rolniczych, 1, 121–131 (2011)Search in Google Scholar

Tao i in. Tao X., Zheng D., Liu T., Wang P., Zhao W., Zhu M., Jiang X., Zhao Y., Wu X.: A Novel strategy to construct yeast Saccharomyces cerevisiae strains for very high gravity fermentation. Plos One, 7, 1–10 (2012)Search in Google Scholar

Walczak P., Kunicka A., Kręgiel D., Drewicz E.: Ulepszanie i przechowywanie mikroorganizmów (w) Mikrobiologia techniczna. Mikroorganizmy i środowiska ich występowania, red. Z. Libudzisz, K. Kowal, Z. Żakowska (tom I), Wyd. Naukowe PWN, Warszawa, 2010, s. 353Search in Google Scholar

Wallace V.: Improving stress tolerance in industrial Saccharomyces cerevisiae strains for ethanol production from lignocellulosic biomass department of chemistry, Lund University, praca doktorska, 2014Search in Google Scholar

Wallace-Salinas V., Gorwa-Grauslund M.F.: Adaptive evolution of an industrial strain of Saccharomyces cerevisiae for combined tolerance to inhibitors and temperature. Biotechnol. Biofuels. 6, 151 (2013)10.1186/1754-6834-6-151401529924139317Search in Google Scholar

Wang M., Zhang W., Xu W., Shen Y., Du L.: Optimization of genome shuffling for high-yield production of the antitumor deacetylmycoepoxydiene in an endophytic fungus of mangrove plants. Microbiol. Biotechnol. Appl. 1–8 (2016)10.1007/s00253-016-7457-027067587Search in Google Scholar

Węgleński P., Golik P.: Inżyniera genetyczna (w) Genetyka molekularna, red. P. Węgleński. Wydawnictwo PWN, Warszawa, 2008, s. 109–134Search in Google Scholar

Yamada R., Tanaka T., Ogino C., Fukuda H., Kondo A.: Novel strategy for yeast construction using delta-integration and cell fusion to efficiently produce ethanol from raw starch. Appl. Microbiol. Biotechnol. 85, 1491–1498 (2010)Search in Google Scholar

Yamada R., Taniguchi N., Tanaka T., Ogino Ch. Fukuda H., Kondo A.: Direct ethanol production from cellulosic materials using a diploid strain of Saccharomyces cerevisiae with optimized cellulase expression. Biotechnol. Biofuels. 4, doi: 10.1186/17546834-4-8 (2011)Search in Google Scholar

Zhang Y.X., Perry K. Vinci V.A., Powell K., Stemmer W.P.C., del Cardayre S.B.: Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature, 415, 644–646 (2002)10.1038/415644a11832946Search in Google Scholar

Zheng D.Q., Wu X.Ch., Wang P-M., Chi X-Q., Tao X-L., Li P. Jiang X-H., Zhao Y-H.: Drug resistance marker-aided genome shuffling to improve acetic acid tolerance in Saccharomyces cerevisiae. J. Ind. Microbiol. Biotechnol. 38, 415–422 (2011)Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo