1. bookVolume 57 (2018): Issue 1 (January 2018)
Journal Details
License
Format
Journal
eISSN
2545-3149
First Published
01 Mar 1961
Publication timeframe
4 times per year
Languages
English, Polish
Open Access

Plasmid-mediated quinolone resistance – PMQR MECHANIZMY OPORNOŚCI NA FLUOROCHINOLONY

Published Online: 23 May 2019
Volume & Issue: Volume 57 (2018) - Issue 1 (January 2018)
Page range: 47 - 57
Received: 01 May 2017
Accepted: 01 Dec 2017
Journal Details
License
Format
Journal
eISSN
2545-3149
First Published
01 Mar 1961
Publication timeframe
4 times per year
Languages
English, Polish
Abstract

Fluoroquinolones(FQ) are broad-spectrum antimicrobial agents widely used to treat a range of infections in clinical medicine. However, the surveillance studies demonstrate that fluoroquinolone resistance rates increased in Enterobacteriaceae in the past years. FQ inhibit bacterial DNA synthesis by interfering with the action of two bacterial enzymes - DNA gyrase and topoisomerase IV. There are two categories of quinolone resistance mechanisms: chromosomally encoded and acquired. Mutations in chromosomal genes encoding gyrase and topoisomerase IV are the most common mechanisms responsible for high-level fluoroquinolone resistance. Mutations can occur also in regulatory genes which control the expression of native efflux pumps located in bacterial membrane. Furthermore, three mechanisms of plasmid-mediated quinolone resistance (PMQR) have been discovered so far, including Qnr proteins, the aminoglycoside acetylotransferase variant - AAC(6’)-Ib-cr, and plasmid-mediated efflux pumps - QepA and OqxAB. Although the PMQR mechanisms alone cause only low-level resistance to fluoroquinolone, they can complement other mechanisms of chromosomal resistance and facilitate the selection of higher-level resistance. Moreover, plasmids with PMQR mechanisms often encode additional resistance traits (ESBLs, pAmpC, KPC) contributing to multidrug resistance (MDR). This review is focused on a range of molecular mechanisms which underlie quinolone resistance.

1. Introduction. 2. Mechanisms of fluoroquinolone action. 3. Chromosomally-encoded fluoroquinolone resistance. 3.1. Mutations changing the functions of target enzymes. 3.2. Reduction of drug concentration in the cytoplasm - efflux pump. 4. Plasmid-mediated quinolone resistance. 4.1. Qnr proteins. 4.2. AAC(6’)-Ib-cr enzyme. 4.3. Plasmid-mediated efflux pump: QepA i OqxAB. 4.4. The impact of PMQR on fluoroquinolone susceptibility level. 5. Summary

Keywords

Słowa kluczowe

Alekshun M.N., Levy S.B.: Regulation of chromosomally mediated multiple antibiotic resistance: the mar regulon. Antimicrob. Agents Chemother. 41, 2067–2075 (1997)10.1128/AAC.41.10.2067Search in Google Scholar

Alekshun M.N., Levy S.B.: The mar regulon: multiple resistance to antibiotics and other toxic chemicals. Trends Microbiol. 7, 410–413 (1999)10.1016/S0966-842X(99)01589-9Search in Google Scholar

Ball P.: Quinolone generations: natural history or natural selection? J. Antimicrob. Chemother. 46 Suppl T1, 17–24 (2000)10.1093/oxfordjournals.jac.a02088910997595Search in Google Scholar

Baranello L., Levens D., Gupta A., Kouzine F.: The importance of being supercoiled: how DNA mechanics regulate dynamic processes. Biochim. Biophys. Acta, 1819, 632–638 (2012)Search in Google Scholar

Barnard F.M., Maxwell A.: Interaction between DNA gyrase and quinolones: effect of alanine mutations at GyrA subunit residues Ser (83) and Asp(87). Antimicrob. Agents Chemother. 45, 1994–2000 (2001)10.1128/AAC.45.7.1994-2000.20019059111408214Search in Google Scholar

Baucheron S., Imberechts H., Chaslus-Dancla E., Clockaert A.: The AcrB multidrug transporter plays a major role in high-level fluoroquinolone resistance in Salmonella enterica serovar Typhimurium phage type DT204. Microb. Drug Resist. 8, 281–289 (2002)10.1089/1076629026046954312523625Search in Google Scholar

Boulund F., Johnning A., Pereira M.B., Larsson D.G., Kristiansson E.: A novel method to discover fluoroquinolone antibiotic resistance (qnr) genes in fragmented nucleotide sequences. BMC Genomics, 13, 695 (2012)10.1186/1471-2164-13-695354324223231464Search in Google Scholar

Breines, D.M., Ouabdesselam S., Ng E.Y., Tankovic J., Shah S., Soussy C.J., Hooper D.C.: Quinolone resistance locus nfxD of Escherichia coli is a mutant allele of parE gene encoding a subunit of topoisomerase IV. Antimicrob. Agents Chemother. 41, 175–179 (1997)10.1128/AAC.41.1.1751636808980775Search in Google Scholar

Cattoir V., Poirel L., Mazel D., Soussy C.J., Nordmann P.: Vibrio splendidus as the source of plasmid-mediated QnrS-like quinolone resistance determinants. Antimicrob. Agents Chemother. 51, 2650–2651 (2007)10.1128/AAC.00070-07191326217452482Search in Google Scholar

Cattoir V., Nordmann P.: Plasmid-mediated quinolone resistance in gram-negative bacterial species: an update. Curr. Med. Chem. 16, 1028–1046 (2009)Search in Google Scholar

Cavaco L.M., Hasman H., Xia S., Aarestrup F.M.: qnrD, a novel gene conferring transferable quinolone resistance in Salmonella enterica serovar Kentucky and Bovismorbificans strains of human origin. Antimicrob. Agents Chemother. 53, 603–608 (2009)10.1128/AAC.00997-08263062819029321Search in Google Scholar

Chmelnitsky I., Hermesh O., Navon-Venezia S., Strahilevitz J., Carmeli Y.: First detection of aac(6’)-Ib-cr in KPC-producing Klebsiella pneumoniae isolates from Tel Aviv, Izrael. J. Antimicrob Chemother. 64, 718–722 (2009)10.1093/jac/dkp27219656782Search in Google Scholar

Chmielarczyk A., Pobiega M., de Champs C., Wojkowska-Mach J., Rozanska A., Heczko P.B., Guillard T., Bulanda M.: The high prevalence of plasmid-mediated quinolone resistance among very low birth-weight infants in Poland. Microb. Drug Resist. 21, 391–397 (2015)10.1089/mdr.2014.0223Search in Google Scholar

Corbett K.D., Schoeffler A.J., Thomsen N.D., Berger J.M.: The structural basic for substrate specifity in DNA topoisomerase IV. J. Mo.l Biol. 351, 545–561 (2005)Search in Google Scholar

Dalhoff A.: Resistance surveillance studies: A multifaceted problem – the fluoroquinolone example. Infection, 40, 239–262 (2012)10.1007/s15010-012-0257-2Search in Google Scholar

Dolejska M., Cizek A. i wsp.: Plasmids carrying blaCTX-M-1 and qnr genes in Escherichia coli isolates from an equine clinic and a horseback riding centre. J. Antimicrob. Chemother. 66, 757–764 (2011)Search in Google Scholar

Drlica K.: Mechanism of fluoroquinolone action. Curr. Opin. Microbiol. 2, 504–508 (1999)10.1016/S1369-5274(99)00008-9Search in Google Scholar

Drlica K., Malik M., Kerns R.J., Zhao X.: Quinolone-mediated bacterial death. Antimicrob. Agents Chemother. 52, 385–392 (2008)10.1128/AAC.01617-06222478317724149Search in Google Scholar

Drlica K., Hiasa H., Kerns R., Malik M., Mustaev A., Zhao X.: Quinolones: action and resistance updated. Curr. Top. Med. Chem. 9, 981–998 (2009)Search in Google Scholar

European Centre for Disease Prevention and Control. Antimicrobial resistance surveillance in Europe. Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net), www.ecdc.europa.eu/en/healthtopics/antimicrobial_resistance/database (22.05.2017)Search in Google Scholar

European Centre for Disease Prevention and Control. Surveillance Atlas of Infectious Diseases, http://ecdc.europa.eu/en/healthtopics/antimicrobial-resistance-and-consumption/Pages/ antimicrobial-resistance-and-anitmicrobial-consumption.asp (22.05.2017)Search in Google Scholar

Emmerson A.M., Jones A.M.: The quinolones: decades of development and use. J. Antimicrob. Chemother. 51, 13–20 (2003)Search in Google Scholar

Ferjani S., Saidani M., Amine F.S., Boutiba-Ben Boubaker I.: Prevalence and characterization of plasmid-mediated quinolone resistance genes in extended-spectrum β-lactamase-producing Enterobacteriaceae in a Tunisian hospital. Mikrob. Drug Resist. 21, 158–166 (2015)10.1089/mdr.2014.005325247633Search in Google Scholar

Fihman V., Lartigue M.F., Jacquier H., Meunier F., Schnepf N., Raskine L., Riahi J., Sanson-le Pors M.J., Berçot B.: Appearance of aac(6’)-Ib-cr gene among extender-spectrum β-lactamase-producing Enterobacteriaceae in a French hospital.J. Infect. 56, 454–459 (2008)Search in Google Scholar

Fonseca E.L., Vincente A.C.: Epidemiology of qnrVCallels and emergence out of the Vibrionaceae family. J. Med. Microbiol. 62, 1628–1630 (2013)Search in Google Scholar

Guillard T., Grillon A., de Champs C., Cartier C., Madoux J., Lozniewski A., Berçot B., Riahi J., Vernet-Garnier V., Cambau E.: Mobile insertion cassets as a source of qnrD mobilization onto small non-transmissible plasmids in Proteeae. Plos One, 9, e87801 (2014)10.1371/journal.pone.0087801391367124504382Search in Google Scholar

Hansen L.H., Johannesen E., Burmølle M., Sørensen A.H., Sørensen S.J.: Plasmid-encoded multidrug efflux pump conferring resistance to olaquindox in Escherichia coli. Antimicrob. Agents Chemother. 48, 3332–3337 (2004)10.1128/AAC.48.9.3332-3337.200451475115328093Search in Google Scholar

Hansen L.H., Jensen L.B., Sørensen H.I., Sørensen S.J.: Substrate specificity of the OqxAB multidrug resistance pump in Escherichia coli and selected enteric bacteria. J. Antimicrob. Chemother. 60, 145–147 (2007)Search in Google Scholar

Hata M., Suzuki M., Matsumoto M., Takahashi M., Sato K., Ibe S., Sakae K.: Cloning of novel gene for quinolone resistance from a transferable plasmid in Shigella flexneri 2b. Antimicrob. Agents Chemother. 49, 801–803 (2005)10.1128/AAC.49.2.801-803.200554736115673773Search in Google Scholar

Hooper D.C.: Mechanisms of fluoroquinolone resistance. Drug Resistance Updates, 2, 38–55 (1999)10.1054/drup.1998.006811504468Search in Google Scholar

Hooper D.C.: New uses for new and old quinolones and challenge of resistance. Clin. Infect. Dis. 30, 234–254 (2000)Search in Google Scholar

Hooper D.C.: Emerging mechanisms of fluoroquinolones resistance. Emerging Infect. Dis. 7, 337–341 (2001)Search in Google Scholar

Hooper D.C.: Efflux pumps and nosocomial antibiotic resistance: a primer for hospital epidemiologists. Clin. Infect. Dis. 40, 1811–1817 (2005)Search in Google Scholar

Hooper D.C., Jakoby G.A.: Mechanisms of drug resistance: quinolone resistance. Ann. N. Y. Acad. Sci. 1354, 12–31 (2015)Search in Google Scholar

Jakoby GA.: Mechanisms of resistance to quinolones. Clin. Infect. Dis. 41, 120-126 (2005)10.1086/42805215942878Search in Google Scholar

Jacoby G.A., Walsh K.E., Mills D.M., Walker V.J., Oh H., Robicsek A., Hooper D.C.: qnrB, another plasmid-mediated gene for quinolone resistance. Antimicrob. Agents Chemother. 50, 1178–1182 (2006)10.1128/AAC.50.4.1178-1182.2006Search in Google Scholar

Jacoby G., Cattoir V., Hooper D., Martínez-Martínez L., Nordmann P., Pascual A., Poirel L., Wang M.: qnr gene nomenclature. Antimicrob. Agents Chemother. 52, 2297–2299 (2008)10.1128/AAC.00147-08Search in Google Scholar

Jacoby G.A., Griffin C.M., Hooper D.C.: Citrobacter spp. As a source of qnrB alleles. Antimicrob. Agents Chemother. 55, 4979–4984 (2011)10.1128/AAC.05187-11Search in Google Scholar

Jacoby G.A., Hooper D.C.: Phylogenetic analysis of chromosomally determined Qnr and related proteins. Antimicrob. Agents Chemother. 57, 1930–1934 (2013)10.1128/AAC.02080-12Search in Google Scholar

Jacoby G.A., Strahilevitz J., Hooper D.C.: Plasmid-mediated quinolone resistance. Microbiol. Spectr. 2, PLAS-0006-2013 (2014)10.1128/microbiolspec.PLAS-0006-2013Search in Google Scholar

Jiang Y., Zhou Z., Qian Y., Wei Z., Yu Y., Hu S., Li L.: Plasmid-mediated quinolone resistance determinants qnr and aac(6’)-Ib-cr in extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in China. J. Antimicrob. Chemother. 61, 1003–1006 (2008)Search in Google Scholar

Jlili Nel-H., Réjiba S., Smaoui H., Guillard T., Chau F., Kechrid A., Cambau E.: Trend of plazmid-mediated quinolone resistance genes at the Children’s Hospital in Tunisia. J. Med. Microbiol. 63, 195–202 (2014)Search in Google Scholar

Karisik E., Ellington M.J., Pike R., Warren R.E., Livermore D.M., Woodford N.: Molecular characterization of plasmids encoding CTX-M-15 β-lactamases from Escherichia coli strains in the United Kingdom. J. Antimicrob. Chemother. 58, 665–668 (2006)Search in Google Scholar

Kim E.S., Jeong J.Y., Jun J.B., Choi S.H., Lee S.O., Kim M.N., Woo J.H., Kim Y.S.: Prevalence of aac(6’)-Ib-cr encoding a cipro-floxacin-modifying enzyme among Enterobacteriaceae blood isolates in Korea. Antimicrob. Agents Chemother. 53, 2643–2645 (2009)10.1128/AAC.01534-08Search in Google Scholar

Kim H.B., Park C.H., Kim C.J., Kim E.C., Jacoby G.A., Hooper D.C.: Prevalence of plasmid-mediated quinolone resistance determinants over a 9-year period. Antimicrob. Agents Chemother. 53, 639–645 (2009)10.1128/AAC.01051-08Search in Google Scholar

Kim H.B., Wang M., Park C.H., Kim E.C., Jacoby G.A., Hooper D.C.: oqxAB encoding a multidrug efflux pump in human clinical isolates of Enterobacteriaceae. Antimicrob. Agents Chemother. 53, 3582–3584 (2009)10.1128/AAC.01574-08Search in Google Scholar

Li L., Liu Y. i wsp.: Spread of oqxAB in Salmonella enterica serotype Typhimurium predominantly by IncHI2 plasmids. J. Antimicrob. Chemother. 68, 2263–2268 (2013)Search in Google Scholar

Ma J., Wang M. i wsp.: High prevalence of plasmid-mediated quinolone resistance determinants qnr, aac(6’)-Ib-cr, and qepA among ceftiofur-resistant Enterobacteriaceae isolates from companion and food-producing animals. Antimicrob. Agents Chemother. 53, 519–524 (2009)Search in Google Scholar

Machado E., Coque T.M., Cantón R., Baquero F., Sousa J.C., Peixe L.: Dissemination in Portugal of CTX-M-15, OXA-1, and TEM-1-producing Enterobacteriaceae strains containing the aac(6’)-Ib-cr gene, which encodes an aminoglycoside- and fluroquinolone-modifying enzyme. Antimicrob. Agents Chemother. 50, 3220–3221 (2006)10.1128/AAC.00473-06Search in Google Scholar

Martínez-Martínez L., Pascual A., Jacoby G.A.: Quinolone resistance from a transferable plasmid. Lancet, 351, 797–799 (1998)10.1016/S0140-6736(97)07322-4Search in Google Scholar

Martínez-Martínez L., Pascual A., Garcia I., Tran J., Jacoby G.A.: Interaction of plasmid and host quinolone resistance. J. Antimicrob. Chemother. 51, 1037–1039 (2003)Search in Google Scholar

Mazzariol A., Kocsis B., Koncan R., Kocsis E., Lanzafame P., Cornaglia G.: Description and plasmid characterization of qnrD determinants in Proteus mirabilis and Morganella morganii. Clin. Microbiol. Infect. 18, E46–48 (2012)Search in Google Scholar

Nordmann P., Poirel L.: Emergence of plasmid-mediated resistance to quinolones in Enterobacteriaceae. J. Antimicrob. Chemother. 56, 463–469 (2005)Search in Google Scholar

Park C.H., Robicsek A., Jacoby G.A., Sahm D., Hooper D.C.: Prevalence in the United States of aac(6’)-Ib-cr encoding a ciprofloxacin-modifying enzyme. Antimicrob. Agents Chemother. 50, 3953–3955 (2006)10.1128/AAC.00915-06163523516954321Search in Google Scholar

Park K.S., Kim M.H., Park T.S., Nam Y.S., Lee H.J., Suh J.T.: Prevalence of the plasmid-mediated quinolone resistance genes, aac(6’)-Ib-cr, qepA, and oqxAB in clinical isolates of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coliand Klebsiella pneumoniae in Korea. Ann. Clin. Lab. Sci. 42, 191–197 (2012)Search in Google Scholar

Perez F., Bonomo R.A.: OqxAB, a quinolone and olaquindox efflux pump, is widely distributed among multidrug-resistant Klebsiella pneumoniae isolates of human origin. Antimicrob. Agents Chemother. 57, 4602–4603 (2013)10.1128/AAC.00725-13375430723817374Search in Google Scholar

Périchon B., Courvalin P., Galimand M.: Transferable resistance to aminoglycosides by methylation of G1405 in 16S rRNA and to hydrophilic fluoroquinolones by QepA-mediated efflux in Escherichia coli. Antimicrob. Agents Chemother. 51, 2464–2469 (2007)10.1128/AAC.00143-07191327617470656Search in Google Scholar

Piddock L. J.: Mechanisms of fluoroquinolone resistance: an update1994–1998. Drugs, 58, 11–18 (1999)10.2165/00003495-199958002-0000310553699Search in Google Scholar

Piekarska K., Wołkowicz T., Zacharczuk K., Rzeczkowska M., Chróst A., Bareja E., Olak M., Gierczyński R.: Co-existence of plasmid-mediated quinolone resistance determinants and mutations in gyrA and parC among fluoroquinolone-resistant clinical Enterobacteriaceae isolated in tertiary hospital in Warsaw, Poland. Int. J. Antimicrob. Agents, 45, 238–243 (2015)10.1016/j.ijantimicag.2014.09.01925468717Search in Google Scholar

Pitout J.D., Wei Y., Church D.L., Gregson D.B.: Surveillance for plasmid-mediated quinolone resistance determinants in Enterobacteriaceae within the Calgary Health Region, Canada: the emergence of aac(6’)-Ib-cr. J. Antimicrob. Chemother. 61, 999–1002 (2008)10.1093/jac/dkn06818296438Search in Google Scholar

Poirel L., Liard A., Rodriguez-Martinez J.M., Nordmann P.: Vibronaceae as a possible source of Qnr-like quinolone resistance determinants. J. Antimicrob. Agents. 56, 1118–1121 (2005)Search in Google Scholar

Poirel L., Rodriguez-Martinez J.M., Mammeri H., Liard A., Nordmann P.: Origin of plasmid-mediated quinolone resistance determinant QnrA. Antimicrob. Agents Chemother. 49, 3523–3525 (2005)10.1128/AAC.49.8.3523-3525.2005119625416048974Search in Google Scholar

Poirel L., Cattoir V., Nordmann P.: Plasmid-mediated quinolone resistance; interactions between humans, animal, and environmental ecologies. Front. Microbiol. 3, 24 (2012)10.3389/fmicb.2012.00024327031922347217Search in Google Scholar

Pons M.J., Gomes C., Ruiz J.: qnrVC, a new transferable Qnr-like family. Enferm. Infect. Microbiol. Clin. 31, 191–192 (2013)Search in Google Scholar

Poole K.: Efflux-mediated antimicrobial resistance. J. Anti microb. Chemother. 56, 20–51 (2005)10.1093/jac/dki17115914491Search in Google Scholar

Putman M., van Veen H.W., Konings W.N.: Molecular properties of bacterial multidrug transporters. Microbiol. Mol. Biol. Rev. 64, 672–693 (2000)Search in Google Scholar

Redgarve L.S., Sutton S.B., Webber M.A., Piddock L.J.V.: Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends in Microbiol. 22, 438–445 (2014)10.1016/j.tim.2014.04.00724842194Search in Google Scholar

Robicsek A., Strahilevitz J., Jacoby G.A., Macielag M., Abbanat D., Park Ch.H., Bush K., Hooper D.C.: Fluoroquinolone-modifying enzyme: a new adaptation of common aminoglicoside acetylotransferase. Nat. Med. 12, 83–88 (2006)Search in Google Scholar

Rodríguez-Martínez J.M., Díaz de Alba P., Briales A., Machuca J., Lossa M.,Fernández-Cuenca F., Rodríguez Baño J., Martínez-Martínez L., Pascual Á.: Contribution of OqxAB efflux pumps to quinolone resistance in extended-spectrum-β-lactamase-producing Klebsiella pneumoniae. J. Antimicrob. Chemother. 68, 68–73 (2013)Search in Google Scholar

Rodríguez-Martínez J.M., Machuca J., Cano M.E., Calvo J., Martínez-Martínez L., Pascual A.: Plasmid-mediated quinolone resistance: two decades on. Drug Resist. Updat. 29, 13–29 (2016)Search in Google Scholar

Ruiz E., Saenz Y., Zarazaga M., Rocha-Gracia R., Martinez-Martinez L., ArletG., Torres C.: qnr, aac(6’)-Ib-cr and qepA genes in Escherichi coli and Klebsiella spp.: genetic environments and plasmid and chromosomal location. J. Antimicrob. Chemother. 67, 886–897 (2012)Search in Google Scholar

Sabtcheva S., Kaku M., Saga t., Ishii Y., Kantardjiev T.: High prevalence of the aac(6’)-Ib-cr gene and its dissemination among Enterobacteriaceae isolates by CTX-M-15 plasmid in Bulgaria. Antimicrob. Agents Chemother. 53, 335–336 (2009)10.1128/AAC.00584-08261217819001110Search in Google Scholar

Saga T., Sabtcheva S., Mitsutake K., Ishii Y., Tateda K., Yamaguchi K., Kaku M.: Characterization of qnrB-like genes in Citrobacter species of the American Type Culture Collection. Antimicrob. Agents Chemother. 57, 2863–2866 (2013)10.1128/AAC.02396-12371615523529729Search in Google Scholar

Sánchez M.B., Rodríguez- Martínez J.M., Martínez-Martínez L., Martínez J. L.: Predictive analysis of transmissible quinolone resistance indicates Stenotrophomonas maltophilia as a potential source of novel family of Qnr determinants. BMC Microbiol. 8, 148–161 (2008)10.1186/1471-2180-8-148255634118793450Search in Google Scholar

Sato T., Yokota S.-I., Uchida I., Okubo T., Usui M., Kusumoto M., Akiba M., Fujii N., Tamura Y.: Fluoroquinolone resistance mechanisms in an Escherichi coli isolate, HUE1, without quinolone resistance – determining region mutations. Front. Microbiol. 4, 125 (2013)10.3389/fmicb.2013.00125366288223745120Search in Google Scholar

Silva-Sánchez J., Cruz-Trujillo E., Barrios H., Reyna-Flores F., Sánchez-Pérez A., Bacterial Resistance Consortium, Garza-Ramos U.: Characterization of plasmid-mediated quinolone resistance (PMQR) genes in extended-spectrum β-lactamase-producing Enterobacteriaceae pediatric clinical isolates in Mexico. PLoS One, 17, 8:e77968 (2013)10.1371/journal.pone.0077968379842724147104Search in Google Scholar

Soge O.O., Adeniyi B.A., Roberts M.C.: New antibiotic resistance genes associated with CTX-M plasmids from uropathogenic Nigerian Klebsiella pneumoniae. J. Antimicrob. Chemother. 58, 1048–1053 (2006)Search in Google Scholar

Strahilevitz J., Engelstein D., Adler A., Temper V., Moses A.E., Block C., Robicsek A.: Changes in qnr prevalence and fluoroquinolone resistance in clinical isolates of Klebsiellapneumoniaeand Enterobacter spp. collected from 1990 to 2005. Antimicrob. Agents Chemother. 51, 3001–3003 (2007)10.1128/AAC.00256-07193251217526754Search in Google Scholar

Strahilevitz J., Hooper D.C.: Dual targeting of topoisomerase IV and gyrase to reduce mutant selection: direct testing of the paradigm by using WCK-1734, a New fluoroquinolone, and ciprofloxacin. Antimicrob. Agents Chemother. 49,1949–1956 (2005)10.1128/AAC.49.5.1949-1956.2005108763115855518Search in Google Scholar

Strahilevitz J., Jacoby G.A., Hooper D.C., Robicsek A.: Plasmid-mediated quinolone resistance: a multifaceted threat. Clin. Microbiol. Rev. 22, 664–689 (2009)Search in Google Scholar

Szmolka A., Fortini D., Villa L., Carattoli A., Anjum M.F., Nagy B.: First report on IncN plasmid-mediated quinolone resistance gene qnrS1 in porcine Escherichia coli in Europe. Mikrob. Drug Resist. 17, 567–573 (2011)10.1089/mdr.2011.006821834664Search in Google Scholar

Veldman K., Aarestrup F.M., i wsp.: International collaborative study on the occurrence of plasmid-mediated quinolone resistance in Salmonella enterica and Escherichia coli isolated from animals, humans, food and the environment in 13 European countries. J. Antimicrob. Chemother. 66, 1278–1286 (2011)10.1093/jac/dkr08421393198Search in Google Scholar

Wang M., Guo Q., Xu X., Wang X., Ye X., Wu S., Hooper D.C., Wang M.: New plasmid-mediated quinolone resistance gene, qnrC, found in clinical isolate of Proteus mirabilis. Antimicrob. Agents Chemother. 53, 1892–1897 (2009)10.1128/AAC.01400-08268156219258263Search in Google Scholar

Wasyl D.: Prevalence and characterization of quinolone resistance mechanisms in commensal Escherichia coli isolated from slaughter animals in Poland, 2009–2012. Mikrob. Drug Resist. 20: 544–549 (2014)10.1089/mdr.2014.006125051094Search in Google Scholar

Webber M.A., Piddock L.J.: Absence of mutations in marRAB or soxRS in acrB-overexpressing fluoroquinolone-resistant clinical and veterinary isolates of Escherichia coli. Antimicrob. Agents Chemother. 45, 1550–1552 (2001)10.1128/AAC.45.5.1550-1552.20019050411302826Search in Google Scholar

Willmott C.J., Maxwell A.: A single point mutation in the DNA gyrase A protein greatly reduces binding of fluoroquinolones to the gyrase-DNA complex. Antimicrob. Agents Chemother. 37,126–127 (1993)10.1128/AAC.37.1.1261876188381633Search in Google Scholar

Yamane K., Wachino J., Suzuki S., Kimura K., Shibata N., Kato H., Shibayama K., Konda T., Arakawa Y.: New plasmid-mediated fluoroquinolone efflux pump, QepA, found in an Escherichi coli clinical isolate. Antimicrob. Agents Chemother. 51, 3354–3360 (2007)10.1128/AAC.00339-07204324117548499Search in Google Scholar

Yamane K., Wachino J., Suzuki S., Arakawa Y.: Plasmid-mediated qepA gene among Escherichia coli clinical isolates from Japan. Antimicrob. Agents Chemother. 52, 1564–1566 (2008)10.1128/AAC.01137-07229254318285488Search in Google Scholar

Yang J., Lu Y., Li J., Ma Y., Hu C., Jin S., Ye L., Cui S.: Characterization of clinical Escherichia coli isolates from China containing transferable quinolone resistance determinants. J. Antimicrob. Chemother. 65, 453–459 (2010)Search in Google Scholar

Yoshida H., Bogaki M., Nakamura M., Nakamura S.: Quinolone resistance-determining region in the DNA gyrase gyrA gene of Escherichia coli. Antimicrob. Agents Chemother. 34, 1271–1272 (1990)10.1128/AAC.34.6.12711717992168148Search in Google Scholar

Yoshida H., Bogaki M., Nakamura M., Yamanaka L.M., Nakamura S.: Quinolone resistance-determining region in the DNA gyrase gyrB gene of Escherichia coli. Antimicrob. Agents Chemother. 35,1647–1650 (1991)10.1128/AAC.35.8.16472452341656869Search in Google Scholar

Yuan J., Xu X., Guo Q., Zhao X., Ye X., Guo Y., Wang M.: Prevalence of the oqxAB gene complex in Klebsiella pneumoniae and Escherichia coli clinical isolates. J. Antimicrob. Chemother. 67, 1655–1659 (2012)Search in Google Scholar

Zhang R., Ichijo T., Huang Y.L., Cai J.C., Zhou H.W., Yamaguchi N., Nasu M., Chen G.X.: High prevalence of qnr and aac(6’)-Ib-cr genes in both water-borne environmental bacteria and clinical isolates of Citobacter freundii in China. Microbes Environ. 27, 158–163 (2011)10.1264/jsme2.ME11308Search in Google Scholar

Zhang S., Liu Y.H. i wsp.: Prevalence and plasmid characterization of the qnrD determinant in Enterobacteriaceae isolated from animal, retail meat products, and humans. Microb. Drug Resist. 19, 331–335 (2013)Search in Google Scholar

Zhao X.,Xu X., Zhu D., Ye X., Wang M.: Decreased quinolone susceptibility in high percentage of Enterobactercloaceae clinical isolates caused only by Qnr determinants. Diagn. Microbiol. Infect. Dis. 67, 110–113 (2010)Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo