Open Access

ROLE OF MICROBIOTA IN MAINTAINING THE HOMEOSTASIS IN THE HUMAN BODY


Cite

Adams J.B., Johansen L.J., Powell L.D., Quig D., Rubin R.A.: Gastrointestinal flora and gastrointestinal status in children with autism-comparisons to typical children and correlation with autism severity. BMC Gastroenterol. 16, 11–22 (2011)10.1186/1471-230X-11-22307235221410934Search in Google Scholar

Ahn H.Y., Kim M., Chae J.S.: Supplementation with two probiotic strains, Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032, reduces fasting triglycerides and enhances apolipoprotein A-V levels in non-diabetic subjects with hypertriglyceridemia. Atherosclerosis, 241, 649–656 (2015)10.1016/j.atherosclerosis.2015.06.03026117402Search in Google Scholar

Almgren M, Lavebratt C. i wsp.: Adenovirus-36 is associated with obesity in children and adults in Sweden as determined by rapid ELISA. Plos One, 7, e41652 (2012)10.1371/journal.pone.0041652340719622848557Search in Google Scholar

Anderson P.: Sudden Infant Death Syndrome Due to Brainstem Serotonin Abnormality. Medscape - Feb 04, 2010. http://www. medscape.com/viewarticle/716500 (10.10.2017)Search in Google Scholar

Bailey M.T., Coe C.L.: Maternal separation disrupts the integrity of the intestinal microflora in infant rhesus monkeys. Dev. Psycho biol. 35, 146–155 (1999)Search in Google Scholar

Bravo J.A., Forsythe P., Chew M.V., Escaravage E., Savignaca H.M., Dinan T.G.: Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA, 108, 16050–16055 (2011)10.1073/pnas.1102999108317907321876150Search in Google Scholar

Cani P.D., Neyrinck A.M., Fava F., Knauf C., Burcelin R.G., Tuohy K.M.: Selective increases of bifidobacteria in gut microflora improve high-fat diet induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia, 50, 2374–2383 (2007)10.1007/s00125-007-0791-017823788Search in Google Scholar

Cantarel B.L., Waubant E., Chehoud C.: Gut microbiota in multiple sclerosis: possible influence of immunomodulators. J. Investig. Med. 63, 729–734 (2015)Search in Google Scholar

Carding S., Verbeke K., Vipond D.T., Corfe B.M., Owen L.J.: Dysbiosis of the gut microbiota in disease. Microb. Ecol. Health Dis. 26, DOI: 10.3402/mehd.v26.26191 (2015)10.3402/mehd.v26.26191431577925651997Search in Google Scholar

Chen P.C., Syu G.D., Chung K.H., Ho Y.H., Chung F.H., Chen P.H., Lin J.M., Chen Y.W., Tsai S.Y., Chen C.S.: Antibody profiling of bipolar disorder using Escherichia coli proteome microarrays. Mol. Cell. Proteomics, 14, 510–518 (2015)Search in Google Scholar

Clarke G., Grenham S., Scully P., Fitzgerald P., Moloney R.D., Shanahan F., Dinan T.G., Cryan J.F.: The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol. Psychiatry, 18, 666–673 (2013)Search in Google Scholar

Cluny N.L., Keenan C.M., Reimer R.A., Le Foll B., Sharkey K.A.: Prevention of Diet-Induced Obesity Effects on Body Weight and Gut Microbiota in Mice Treated Chronically with Δ9-Tetrahydrocannabinol. Plos One, 10, e0144270 (2015)10.1371/journal.pone.0144270466911526633823Search in Google Scholar

Croxford J.L., Miyake S.: Immunoregulation of multiple sclerosis by gut environmental factors. Clin. Exp. Neuroimmunol. 6, 362–369 (2015)10.1111/cen3.12252Search in Google Scholar

Emoto T., Yamashita T., Sasaki N.: Analysis of gut microbiota in coronary artery disease patients: a possible link between gut microbiota and coronary artery disease. J. Atheroscler. Thromb. 23, 908–921 (2016)10.5551/jat.32672739929926947598Search in Google Scholar

Felizardo R.J.F., Castoldi A., Andrade-Oliveira V., Câmara N.O.S.: The microbiota and chronic kidney diseases: a double-edged sword. Clin. Transl. Immunology, 5, e86. DOI: 10.1038/cti.2016. 36 (2016)Search in Google Scholar

Fiedurek J.: Mikrobiom a zdrowie człowieka. Wydawnictwo UMCS, Lublin, 2014Search in Google Scholar

Fiedurek J.: Rola żywności i żywienia w profilaktyce i terapii chorób człowieka. Wydawnictwo UMCS, Lublin, 2007Search in Google Scholar

Freestone P.P., Williams P.H., Haigh R.D., Maggs A.F., Neal C.P., Lyte M.: Growth stimulation of intestinal commensal Escherichia coli by catecholamines: a possible contributory factor in trauma-induced sepsis. Shock, 18, 465–470 (2002)10.1097/00024382-200211000-0001412412628Search in Google Scholar

Grossi E., Melli S., Dunca D., TerruzziV.: Unexpected improvement in core autism spectrum disorder symptoms after long-term treatment with probiotics. SAGE Open. Med. Case Rep. 4, 2050313X16666231. DOI: 10.1177/2050313X16666231 (2016)10.1177/2050313X16666231500629227621806Search in Google Scholar

Hsiao E.Y., Mazmanian S.K. i wsp.: Microbiota modulate behavioral and physiological abnormalities associated with neuro-developmental disorders. Cell, 155, 1451–1463 (2013)10.1016/j.cell.2013.11.024389739424315484Search in Google Scholar

Huang Y.J., Boushey H.A.: The microbiome in asthma. J. Allergy Clin. Immunol. 135, 25–30 (2015)Search in Google Scholar

Human Microbiome Project Consortium: A framework for human microbiome research. Nature, 486, 215–221 (2012)10.1038/nature11209337774422699610Search in Google Scholar

Human Microbiome Project Consortium: Structure, function and diversity of the healthy human microbiome. Nature, 486, 207–214 (2012)10.1038/nature11234356495822699609Search in Google Scholar

Karlsson F.H., Fåk F., Nookaew I.: Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat. Commun. 3, 1245 (2012)10.1038/ncomms2266353895423212374Search in Google Scholar

Kaur S., Kaur S.: Bacteriocins as potential anticancer agents. Front. Pharmacol. 6, 272 (2015)10.3389/fphar.2015.00272463959626617524Search in Google Scholar

Kelly T.N., Bazzano L.A., Ajami N.J.: Gut microbiome associates with lifetime cardiovascular disease risk profile among. Bogalusa heart study participants. Circ. Res. 119, 956–964 (2016)Search in Google Scholar

Kleimann A., Toto S., Eberlein C.K., Kielstein J.T., Bleich S., Frieling H., Sieberer M.: Psychiatric symptoms in patients with Shiga toxin-producing E. coli O104:H4 induced haemolytic-uraemic syndrome. PLoS One. 9, e101839 (2014)10.1371/journal.pone.0101839409020825007072Search in Google Scholar

Kosiewicz M.M., Dryden G.W., Chhabra A., Alard P.: Relationship between gut microbiota and development of T cell associated disease. FEBS Lett. 588, 4195–4206 (2014)10.1016/j.febslet.2014.03.01924681103Search in Google Scholar

Kurnatowska A. (red.) Ekologia i jej związki z różnymi dziedzinami wiedzy. Wyd. PWN Wrocław (1999)Search in Google Scholar

Larsen N., Vogensen F.K., van den Berg F., Nielsen D.S., Andreasen A.S., Pedersen B.K., Abu Al-Soud W., Sorensen S.J., Hansen L.H., Jakobsen M.: Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. Plos One, 5, e90852 (2010)10.1371/journal.pone.0009085281671020140211Search in Google Scholar

Laursen M.F., Andersen L.B.B., Michaelsen K.F., Mølgaard C., Trolle E., Bahl M.I., Licht T.R.: Infant Gut Microbiota Development Is Driven by Transition to Family Foods Independent of Maternal Obesity. mSphere1, e00069–15 (2016)10.1128/mSphere.00069-15486360727303699Search in Google Scholar

Leclercq S., Delzenne N.M. i wsp.: Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity. Proc. Natl. Acad. Sci. USA, 111, 4485–4493 (2014)Search in Google Scholar

Ley R.E., Turnbaugh P.J., Klein S., Gordon J.I.: Human gut microbes linked to obesity. Nature, 444, 1022–1023 (2006)10.1038/4441022a17183309Search in Google Scholar

Machiels K., Vermeire S. i wsp.: A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut, 63, 1275–1283 (2014)10.1136/gutjnl-2013-30483324021287Search in Google Scholar

Maes M., Leonard B.E., Myint A.M., Kubera M., Verkerk R.: The new ‘5-HT’ hypothesis of depression: cell-mediated immune activation induces indoleamine 2,3-dioxygenase, which leads to lower plasma tryptophan and an increased synthesis of detrimental tryptophan catabolites (TRYCATs), both of which contribute to the onset of depression. Prog. Neuropsychopharmacol. Biol. Psychiatry, 35, 702–721 (2011)Search in Google Scholar

Matthews D.M., Jenks S.M.: Ingestion of Mycobacterium vaccae decreases anxiety-related behavior and improves learning in mice. Behav. Processes, 96, 27–35 (2013)Search in Google Scholar

Maynard C.L., Elson C.O., Hatton R.D., Weaver C.T.: Reciprocal interactions of the intestinal microbiota and immune system. Nature, 489, 231–241 (2012)10.1038/nature11551449233722972296Search in Google Scholar

Miyake S., Kim S., Suda W.: Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to Clostridia XIVa and IV clusters. Plos One, 10: e0137429 (2015)10.1371/journal.pone.0137429456943226367776Search in Google Scholar

Mulle J.G., Sharp W.G., Cubells J.F.: The Gut Microbiome: A New Frontier in Autism Research. Curr. Psychiatry Rep. 15, 337 (2013)10.1007/s11920-012-0337-0356449823307560Search in Google Scholar

Murri M., Leiva I., Gomez-Zumaquero J.M., Tinahones F.J., Cardona F., Soriguer F., Queipo-Ortuno M.I.: Gut microbiota in children with type 1 diabetes differs from that in healthy children: A case-control study. BMC Med. 11, DOI: 10.1186/1741–7015-11-46 (2013)10.1186/1741-7015-11-46362182023433344Search in Google Scholar

Nguyen C., Nguyen V. D.: Discovery of Azurin – like anticancer bacteriocins from human gut microbiome through homology modeling and molecular docking against the tumor suppressor p53. Biomed. Res. Int. DOI: 10.1155/2016/8490482 (2016)10.1155/2016/8490482486707027239476Search in Google Scholar

Nowak A., Libudzisz Z.: Mutagenic and carcinogenic metabolites formed by human colonic flora. Post. Mikrobiol. 43, 321–339 (2004)Search in Google Scholar

O’Brien M.E., Anderson H., Kaukel E., O’ Byrne K., Pawlicki M., von Pawel J., Reck M.: SRL172 (killed Mycobacterium vaccae) in addition to standard chemotherapy improves quality of life without affecting survival, in patients with advanced non-small-cell lung cancer: phase III results. Ann. Oncol. 15, 906–914 (2004)10.1093/annonc/mdh22015151947Search in Google Scholar

Oriach C.S., Robertson R.C., Stanton C., Cryan J.F., Dinan T.G.: Food for thought: The role of nutrition in the microbiota-gut-brain axis. Clin. Nutr. Exp. 6, 25–38 (2016)Search in Google Scholar

Parracho H.M., Bingham M.O., Gibson G.R., McCartney A.L.: Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J. Med. Microbiol. 54, 987–991 (2005)Search in Google Scholar

Ponterio E., Gnessi L.: Adenovirus 36 and obesity: An overwiev. Viruses, 7, 3719–3740 (2015)10.3390/v7072787451711626184280Search in Google Scholar

Rao A.V., Bested A.C., Beaulne T.M., KatzmanM.A., Iorio C., Berardi J.M., Logan A.C.: A randomized, double-blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome. Gut Pathog. 1, DOI: 10.1186/1757–4749-1-6 (2009)10.1186/1757-4749-1-6266432519338686Search in Google Scholar

Remely M., Dworzak S., Hippe B., Zwielehner J., Aumüller E., Brath H., Haslberger A.: Abundance and Diversity of Microbiota in Type 2 Diabetes and Obesity. J. Diabetes Metab. 4, DOI: 10.4172/2155-6156.1000253 (2013)10.4172/2155-6156.1000253Search in Google Scholar

Rogers G.B., Keating D.J, Young R.L., Wong M-L., Licinio J., Wesselingh S.: From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways. Mol. Psychiatr. 21, 738–748 (2016)Search in Google Scholar

Rudzki L., Szulc A.: Wpływ jelitowej flory bakteryjnej na ośrodkowy układ nerwowy i jej potencjalne znaczenie w leczeniu zaburzeń psychicznych. Farmakoter. Psychiatr. Neurol. 2, 69–77 (2013)Search in Google Scholar

Seksik P., Rigottier-Gois L., Gramet G., Sutren M., Pochart P., Marteau P., Jian R., Dore J.: Alterations of the dominant faecal bacterial groups in patients with Crohn’s disease of the colon. Gut, 52, 237–242 (2003)10.1136/gut.52.2.237177497712524406Search in Google Scholar

Sender R., Fuchs S., Milo R.: Revised estimates for the number of human and bacteria cells in the body. Plos Biology, DOI: 10.1371/journal.pbio.1002533 (2016)10.1371/journal.pbio.1002533499189927541692Search in Google Scholar

Shaikin F., Abhinand P., Ragunath P.: Identification and characterization of Lactobacillus salavarius bacteriocins and its relevance in cancer therapeutics. Bioinformation, 8, 589–594 (2012)10.6026/97320630008589340098822829737Search in Google Scholar

West C.E., Jenmalm M.C., Prescott S.L.: The gut microbiota and its role in the development of allergic disease: a wider perspective. Clin. Exp. Allergy, 45, 43–53 (2015)Search in Google Scholar

Yamashita T., Emoto T., Sasaki N., Hirata K.: Gut Microbiota and Coronary Artery Disease. Int. Heart J. 57, 663–671 (2016)Search in Google Scholar

Yeoh N., Burton J.P., Suppiah P., Reid G., Stebbings S.: The role of the microbiome in rheumatic diseases. Curr. Rheumatol. Rep. 15, DOI: 10.1007/s11926-012-0314-y (2013)10.1007/s11926-012-0314-y23378145Search in Google Scholar

Yin J., Liao S.X., He Y.: Dysbiosis of gut microbiota with reduced trimethylamine-N-oxide level in patients with large-artery atherosclerotic stroke or transient ischemic attack. J. Am. Heart Assoc. 4, e002699 (2015)10.1161/JAHA.115.002699484521226597155Search in Google Scholar

Zhang Y.J., Li S., Gan R.Y., Zhou T., Xu D.P., Li H.B.: Impacts of gut bacteria on human health and diseases. Int. J. Mol. Sci. 16, 7493–519 (2015)Search in Google Scholar

Zwolinska-Wcislo M., Pawlik W.W. i wsp.: Effect of Candida colonization on human ulcerative colitis and the healing of inflammatory changes of the colon in the experimental model of colitis ulcerosa. J. Physiol. Pharmacol. 60, 107–118 (2009)Search in Google Scholar

eISSN:
2545-3149
Languages:
English, Polish
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Microbiology and Virology