1. bookVolume 56 (2017): Issue 4 (January 2017)
Journal Details
License
Format
Journal
eISSN
2545-3149
First Published
01 Mar 1961
Publication timeframe
4 times per year
Languages
English, Polish
access type Open Access

Antibiotic biosynthesis and secondary metabolism in high-yielding strains of Streptomyces, Penicillium chrysogenumand Acremonium chrysogenum

Published Online: 22 May 2019
Volume & Issue: Volume 56 (2017) - Issue 4 (January 2017)
Page range: 422 - 428
Received: 01 Apr 2017
Accepted: 01 May 2017
Journal Details
License
Format
Journal
eISSN
2545-3149
First Published
01 Mar 1961
Publication timeframe
4 times per year
Languages
English, Polish
Abstract

In this article, the secondary metabolism as a basis for antibiotics production by industrial strains of Streptomyces, Penicillium chrysogenum and Acremonium chrysogenum is discussed. Images from transmission electron microscopy reveal some important features of the mycelial cells which are related to antibiotics biosynthesis. This discovery is important for further industrial strain improvement and has economic significance. Possibilities of new strategies for antimicrobial treatment are discussed.

1. Introduction. 2. Industrial strain improvements. 3. The pathways of antibiotic biosynthesis by Streptomyces spp. 4. Compartmentalization in antibiotic biosynthesis by Streptomyces spp. 5. The pathway of penicillin G biosynthesis by Penicillium chrysogenum. 6. Compartmentalization in penicillin G biosynthesis by Penicillium chrysogenum. 7. The pathway of cephalosporin C biosynthesis by Acremonium chrysogenum.8. Compartmentalization in cephalosporin biosynthesis by Acremonium chrysogenum. 9. The future of antibiotic therapy. 10. Conclusions

Key words

Słowa kluczowe

Bartoszewska M., Opaliński L., Veenhuis M, van der Klei.: The significance of peroxisomes in secondary metabolite biosynthesis in filamentous fungi. Biotechnol. Lett.33, 1921–1931 (2011)10.1007/s10529-011-0664-ySearch in Google Scholar

Brakhage A.A., Spröte P., Al-Abdallah Q., Gehrke A., Plaftner K., Tüncher: Regulation of penicillin biosynthesis in filamentous fungi. Adv. Biochem. Eng. Biotechnol.88, 45–90 (2004)10.1007/b99257Search in Google Scholar

Evers M.E., Trip H., van den Berg M.A., Bouvenberg R.A., Driessen A.L.: Compartmentalization and transport in β-lactam antibiotics biosynthesis. Adv. Biochem. Eng. Biotechnol.88, 111– 135 (2004)10.1007/b99259Search in Google Scholar

Keller N.P., Turner G., Bennett J.W.: Fungal secondary metabolism – from biochemistry to genesis. Nat. Rev. Microbiol.3, 937–947 (2005)10.1038/nrmicro1286Search in Google Scholar

Kurzątkowski W., Palissa H., Van Liempt H., von Döhren H., Kleinkauf H., Wolf W.P., Kuryłowicz W.: Localization of isopenicillin N synthase In Penicillium chrysogenum PQ-96. Appl. Microbiol. Biot.35, 517–520 (1991)10.1007/BF00169760Search in Google Scholar

Kurzątkowski W., Staniszewska M., Bondaryk M., Gębska-Kuczerowska A.: Penicillin G production by industrial strains of Penicillium chrysogenum. Post. Mikrobiol.53, 366–370 (2014)Search in Google Scholar

Kurzątkowski W., Staniszewska M., Bondaryk M., Gębska-Kuczerowska A.: Compartmentalization in penicillin G biosynthesis by Penicillium chrysogenum PQ-96. Pol. J. Microbiol. 63, 399–408 (2014)Search in Google Scholar

Kurzątkowski W., Gębska-Kuczerowska A.: Compartmentalization in cephalosporin biosynthesis by industrial strains of Acremonium chrysogenum. Post. Mikrobiol.54, 374–379 (2015)Search in Google Scholar

Kurzątkowski W., Gębska-Kuczerowska A., Oliwa-Dobieszewska K., Gaber A., Kuczerowski M.: Penicillin G secretion by industrial Mycelia of Penicillium chrysogenum. Post. Mikrobiol.55, 433–437 (2016)Search in Google Scholar

Kurzątkowski W., Gębska-Kuczerowska A.: Pexophagy in penicillin G secretion by Penicillium chrysogenum PQ-96. Pol. J. Microbiol.65, 365–368 (2016)10.5604/17331331.1215616Search in Google Scholar

Lendenfeld T., Ghali D., Wolschek M., Kubicek-Pranz E.M., Kubicek C.P.: Subcellular compartmentation of penicillin biosynthesis in Penicillium chrysogenum – aminoacids are precursors derived from the vacuole. J. Biol. Chem.268, 665–671 (1993)10.1016/S0021-9258(18)54203-4Search in Google Scholar

Martin J-F., Ullán R.V., Gracia-Estrada C.: Regulation and compartmentalization of β-lactam biosynthesis. Medical Biotechnol.3, 285–299 (2010)10.1111/j.1751-7915.2009.00123.x381537121255328Search in Google Scholar

Martin J-F., Ullán R.V., Gracia-Estrada C.: Role of peroxisomes in biosynthesis and secretion of β-lactams and other secondary metabolites. J. Ind. Microbiol.39, 367–382 (2012)10.1007/s10295-011-1063-z22160272Search in Google Scholar

Meijer W.H., Gidijala I., Fekken S., Kiel J.A., van den Berg M.A., Lascaris L., Bovenberg E.A.L, van der Klei I.J.: Peroxisomes are required for efficient penicillin biosynthesis in Penicillium chryso genum. Appl. Environ. Microbiol.78, 5702–5709 (2010)10.1128/AEM.02327-09293506520601503Search in Google Scholar

Müller W.H., Essers J., Humbel B.M., Verkleij A.J.: Enrichment of Penicillium chrysogenum microbodies by isopycnic centrifugation in nycodenz as visualized with immune-electron microscopy. Biochem. Biophys. Acta, 1248, , 215–220 (1995)10.1016/0304-4165(95)00106-LSearch in Google Scholar

Nagotu S., Veenhuiss M., van der Klei I.J.: Divide et inpera: The dictum of peroxisomes. Trafic, 11, 175–184 (2010)10.1111/j.1600-0854.2009.01019.xSearch in Google Scholar

Nuttall J.M., Motley A., Hettema E.H.: Peroxisome biosynthesis recent advances. Curr. Opin. Cell. Bioll.23, 421–426 (20011).10.1016/j.ceb.2011.05.005Search in Google Scholar

Paul G.C., Thomas C.R.: A structured model for hyphal differentiation and penicillin production using Penicillium chrysogenum. Biotechnol. Bioeng, 51, 558–572 (1996)10.1002/(SICI)1097-0290(19960905)51:5<558::AID-BIT8>3.0.CO;2-BSearch in Google Scholar

Schmitt E.K., Hoff B., Kück U.: Regulation of cephalosporin biosynthesis. Adv. Biochem. Biotechnol.88, 1–43 (2004)10.1007/b99256Search in Google Scholar

Thykaer J., Nielsen J.: Metabolic engineerind of β-lactam production. Metab. Eng.5, 56–69 (2003)10.1016/S1096-7176(03)00003-XSearch in Google Scholar

Van de Kamp M., Driessen A.J., Konings W.N.: Compartmentalization and transport in β-lactam antibiotic biosynthesis by filamentous fungi. Anton. Leeuw.75, 41–78 (1999)10.1023/A:1001775932202Search in Google Scholar

Van den Berg M.A., Bovenberg R.A.L. et al.: Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nat. Biotechnol.26, 1161–1169 (2008)Search in Google Scholar

Van der Lende T.R., van de Kamp M., van den Berg M., Sjollema K., Bouvenberg R.A., Veenhuis M., Konings W.N., Driessen A.J.: δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine synthetase that mediates the first committed step in penicillin biosynthesis, is a cytosolic enzyme. Fungal. Genet. Biol.37, 49–55 (2002)10.1016/S1087-1845(02)00036-1Search in Google Scholar

Weber S.S., Bovenberg R.A., Driessen A.J.: Biosynthetic concepts for the production of β-lactam antibiotics in Penicillium chrysogenum. J. Biotechnol.7, 225–236 (2012)10.1002/biot.201100065Search in Google Scholar

Weber S.S., Poli F., Boer R., Bouvenberg R.A., Driessen A.J.: Increased penicillin production in Penicillium chrysogenum strains via balanced overexpression of isopenicillin N acyltransferase. Appl. Environ. Microbiol.78, 7107–7113 (2012)10.1128/AEM.01529-12Search in Google Scholar

Zähner H., Maas W.K.: Biology of Antibiotics, Springer-Verlag, New York, Heidelberg, Berlin, 197210.1007/978-1-4613-9373-3Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo