Open Access

Effects of SARS-CoV-2 and vaccination on male fertility – a review


Cite

Khalili MA, Leisegang K, Majzoub A, Finelli R, Panner Selvam MK, Henkel R, et al. Male fertility and the COVID-19 pandemic: systematic review of the literature. World J Mens Health 2020;38(4):506-20. Search in Google Scholar

Omolaoye TS, Adeniji AA, Cardona Maya WD, du Plessis SS. SARS-CoV-2 (Covid-19) and male fertility: Where are we? Reprod Toxicol 2021;99:65-70. Search in Google Scholar

de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol 2016;14(8):523-34. Search in Google Scholar

Ashour HM, Elkhatib WF, Rahman MM, Elshabrawy HA. Insights into the recent 2019 novel coronavirus (SARS-CoV-2) in light of past human coronavirus outbreaks. Pathogens 2020;9(3):186. Search in Google Scholar

Guarner J. Three emerging coronaviruses in two decades. Am J Clin Pathol 2020;153(4):420-1. Search in Google Scholar

Wang Z, Xu X. scRNA-seq profiling of human testes reveals the presence of the ACE2 receptor, a target for SARS-CoV-2 infection in spermatogonia, Leydig and Sertoli cells. Cells 2020;9(4):920. Search in Google Scholar

Malki MI. COVID-19 and male infertility: An overview of the disease. Medicine (Baltimore) 2022;101(27):e29401. Search in Google Scholar

Pan L, Mu M, Yang P, Sun Y, Wang R, Yan J, et al. Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China: A descriptive, cross-sectional, multicenter study. Am J Gastroenterol 2020;115(5):766-73. Search in Google Scholar

Stanley KE, Thomas E, Leaver M, Wells D. Coronavirus disease-19 and fertility: viral host entry protein expression in male and female reproductive tissues. Fertil Steril 2020;114(1):33-43. Search in Google Scholar

Ge XY, Li JL, Yang XL, Chmura AA, Zhu G, Epstein JH, et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 2013;503(7477):535-8. Search in Google Scholar

Seymen CM. The other side of COVID-19 pandemic: Effects on male fertility. J Med Virol 2021;93(3):1396-402. Search in Google Scholar

Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P, et al. Genome composition and divergence of the novel coronavirus (2019–nCoV) originating in China. Cell Host Microbe 2020;27(3):325-8. Search in Google Scholar

Fu J, Zhou B, Zhang L, Balaji KS, Wei C, Liu X, et al. Expressions and significances of the angiotensin-converting enzyme 2 gene, the receptor of SARS-CoV-2 for COVID-19. Mol Biol Rep 2020;47(6):4383-92. Search in Google Scholar

Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status. Mil Med Res 2020;7(1):11. Search in Google Scholar

Verdecchia P, Cavallini C, Spanevello A, Angeli F. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur J Intern Med 2020;76:14-20. Search in Google Scholar

Sheikhzadeh Hesari F, Hosseinzadeh SS, Asl Monadi Sardroud MA. Review of COVID-19 and male genital tract. Andrologia 2021;53(1):e13914. Search in Google Scholar

Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ Res 2000;87(5):E1-9. Search in Google Scholar

Tikellis C, Johnston CI, Forbes JM, Burns WC, Burrell LM, Risvanis J, et al. Characterization of renal angiotensin-converting enzyme 2 in diabetic nephropathy. Hypertension 2003;41(3):392-7. Search in Google Scholar

Crackower MA, Sarao R, Oudit GY, Yagil C, Kozieradzki I, Scanga SE, et al. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature 2002;417(6891):822-8. Search in Google Scholar

Xie X, Chen J, Wang X, Zhang F, Liu Y. Age- and gender-related difference of ACE2 expression in rat lung. Life Sci 2006;78(19):2166-71. Search in Google Scholar

Gu J, Yin J, Zhang M, Li J, Wu Y, Chen J, et al. Study on the clinical significance of ACE2 and its age-related expression. J Inflamm Res 2021;14:2873-82. Search in Google Scholar

Baker SA, Kwok S, Berry GJ, Montine TJ. Angiotensin-converting enzyme 2 (ACE2) expression increases with age in patients requiring mechanical ventilation. PLoS One 2021;16(2):e0247060. Search in Google Scholar

Shen Q, Xiao X, Aierken A, Yue W, Wu X, Liao M, et al. The ACE2 expression in Sertoli cells and germ cells may cause male reproductive disorder after SARS‐CoV‐2 infection. J Cell Mol Med 2020;24(16):9472-7. Search in Google Scholar

Douglas GC, O’Bryan MK, Hedger MP, Lee DK, Yarski MA, Smith AI, et al. The novel angiotensin-converting enzyme (ACE) homolog, ACE2, is selectively expressed by adult Leydig cells of the testis. Endocrinology 2004;145(10):4703-11. Search in Google Scholar

Hikmet F, Méar L, Edvinsson Å, Micke P, Uhlén M, Lindskog C. The protein expression profile of ACE2 in human tissues. Mol Syst Biol 2020;16(7):e9610. Search in Google Scholar

Barbirato D da S, Fogacci MF, Azevedo PO de, Sansone C, Carneiro JRI, Barros MCM de. Relationship of COVID-19 pathogenesis for periodontal medicine research. Part I: Pathogenesis of COVID-19. Res Soc Dev 2021;10(5):e1910513729. Search in Google Scholar

Rajak P, Roy S, Dutta M, Podder S, Sarkar S, Ganguly A, et al. Understanding the cross-talk between mediators of infertility and COVID-19. Reprod Biol 2021;21(4):100559. Search in Google Scholar

Luddi A, Luongo FP, Dragoni F, Fiaschi L, Vicenti I, Lupetti P, et al. Cellular and molecular mechanisms of in vivo and in vitro SARS-CoV-2 infection: A lesson from human sperm. Cells 2022;11(17):2631. Search in Google Scholar

Ramal-Sanchez M, Castellini C, Cimini C, Taraschi A, Valbonetti L, Barbonetti A, et al. ACE2 receptor and its isoform short-ace2 are expressed on human spermatozoa. Int J Mol Sci 2022;23(7):3694. Search in Google Scholar

Pan PP, Zhan QT, Le F, Zheng YM, Jin F. Angiotensin-converting enzymes play a dominant role in fertility. Int J Mol Sci 2013;14(10):21071-86. Search in Google Scholar

Reis AB, Araújo FC, Pereira VM, Dos Reis AM, Santos RA, Reis FM. Angiotensin (1–7) and its receptor Mas are expressed in the human testis: implications for male infertility. J Mol Histol 2010;41(1):75-80. Search in Google Scholar

Dai YJ, Hu F, Li H, Huang HY, Wang DW, Liang Y. A profiling analysis on the receptor ACE2 expression reveals the potential risk of different type of cancers vulnerable to SARS-CoV-2 infection. Ann Transl Med 2020;8(7):481. Search in Google Scholar

Ata B, Vermeulen N, Mocanu E, Gianaroli L, Lundin K, Rautakallio-Hokkanen S, et al. SARS-CoV-2, fertility and assisted reproduction. Hum Reprod Update 2023;29(2):177-96. Search in Google Scholar

Docherty AB, Harrison EM, Green CA, Hardwick HE, Pius R, Norman L, et al. Features of 20 133 UK patients in hospital with COVID-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study. BMJ 2020;369:m1985. Search in Google Scholar

Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020;382(18):1708-20. Search in Google Scholar

Batiha O, Al-Deeb T, Al-Zoubi E, Alsharu E. Impact of COVID-19 and other viruses on reproductive health. Andrologia 2020;52(9):e13791. Search in Google Scholar

Aitken RJ. COVID-19 and human spermatozoa – Potential risks for infertility and sexual transmission? Andrology 2021;9(1):48-52. Search in Google Scholar

Abdel-Moneim A. COVID-19 pandemic and male fertility: clinical manifestations and pathogenic mechanisms. Biochemistry (Mosc) 2021;86(4):389-96. Search in Google Scholar

Xu J, Qi L, Chi X, Yang J, Wei X, Gong E, et al. Orchitis: a complication of severe acute respiratory syndrome (SARS). Biol Reprod 2006;74(2):410-6. Search in Google Scholar

Duarte-Neto AN, Monteiro RAA, da Silva LFF, Malheiros DMAC, de Oliveira EP, Theodoro-Filho J, et al. Pulmonary and systemic involvement in COVID-19 patients assessed with ultrasound-guided minimally invasive autopsy. Histopathology 2020;77(2):186-97. Search in Google Scholar

Yang M, Chen S, Huang B, Zhong JM, Su H, Chen YJ, et al. Pathological findings in the testes of COVID-19 patients: clinical implications. Eur Urol Focus 2020;6(5):1124-9. Search in Google Scholar

Flaifel A, Guzzetta M, Occidental M, Najari BB, Melamed J, Thomas KM, et al. Testicular changes associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Arch Pathol Lab Med 2021;145(1):8-9. Search in Google Scholar

Ma X, Guan C, Chen R, Wang Y, Feng S, Wang R, et al. Pathological and molecular examinations of postmortem testis biopsies reveal SARS-CoV-2 infection in the testis and spermatogenesis damage in COVID- 19 patients. Cell Mol Immunol 2021;18(2):487-9. Search in Google Scholar

Achua JK, Chu KY, Ibrahim E, Khodamoradi K, Delma KS, Iakymenko OA, et al. Histopathology and ultrastructural findings of fatal COVID-19 infections on testis. World J Mens Health 2021;39(1):65-74. Search in Google Scholar

Bian XW. Autopsy of COVID-19 patients in China. Natl Sci Rev 2020;7(9):1414-8. Search in Google Scholar

Moghimi N, Eslami Farsani B, Ghadipasha M, Mahmoudiasl GR, Piryaei A, Aliaghaei A, et al. COVID-19 disrupts spermatogenesis through the oxidative stress pathway following induction of apoptosis. Apoptosis 2021;26(7-8):415-30. Search in Google Scholar

Demyashkin G, Kogan E, B oldyrev D, Demura T, Tyatyushkina A, Annenkova E, et al. Molecular changes in the testes of COVID-19 patients. J Biomol Struct Dyn 2023;1-6. Search in Google Scholar

Costa GMJ, Lacerda SMSN, Figueiredo AFA, Wnuk NT, Brener MRG, Andrade LM, et al. High SARS-CoV-2 tropism and activation of immune cells in the testes of non-vaccinated deceased COVID-19 patients. BMC Biol 2023;21(1):36. Search in Google Scholar

Hajizadeh Maleki B, Tartibian B. COVID-19 and male reproductive function: a prospective, longitudinal cohort study. Reproduction 2021;161(3):319-31. Search in Google Scholar

Zhang H, Yin Y, Wang G, Liu Z, Liu L, Sun F. Interleukin-6 disrupts blood-testis barrier through inhibiting protein degradation or activating phosphorylated ERK in Sertoli cells. Sci Rep 2014;4:4260. Search in Google Scholar

Reddy R, Farber N, Kresch E, Seetharam D, Diaz P, Ramasamy R. SARS-CoV-2 in the prostate: immunohistochemical and ultrastructural studies. World J Mens Health 2022;40(2):340-3. Search in Google Scholar

Zhang S, Wang X, Zhang H, Xu A, Fei G, Jiang X, et al. The absence of coronavirus in expressed prostatic secretion in COVID-19 patients in Wuhan city. Reprod Toxicol 2020;96:90-4. Search in Google Scholar

Ruan Y, Hu B, Liu Z, Liu K, Jiang H, Li H, et al. No detection of SARS‐CoV‐2 from urine, expressed prostatic secretions, and semen in 74 recovered COVID‐19 male patients: A perspective and urogenital evaluation. Andrology 2021;9(1):99-106. Search in Google Scholar

He Y, Wang J, Ren J, Zhao Y, Chen J, Chen X. Effect of COVID-19 on male reproductive system – a systematic review. Front Endocrinol (Lausanne) 2021;12:677701. Search in Google Scholar

Haghpanah A, Masjedi F, Salehipour M, Hosseinpour A, Roozbeh J, Dehghani A. Is COVID-19 a risk factor for progression of benign prostatic hyperplasia and exacerbation of its related symptoms?: A systematic review. Prostate Cancer Prostatic Dis 2022;25(1):27-38. Search in Google Scholar

Pecoraro A, Morselli S, Raspollini MR, Sebastianelli A, Nicoletti R, Manera A, et al. The role of COVID-19 in prostate tissue inflammation: first pathological evidence. Prostate Cancer Prostatic Dis 2022;25(2):370-2. Search in Google Scholar

Nassau DE, Best JC, Kresch E, Gonzalez DC, Khodamoradi K, Ramasamy R. Impact of the SARS‐CoV‐2 virus on male reproductive health. BJU Int 2022;129(2):143-50. Search in Google Scholar

Ma L, Xie W, Li D, Shi L, Ye G, Mao Y, et al. Evaluation of sex-related hormones and semen characteristics in reproductive-aged male COVID-19 patients. J Med Virol 2021;93(1):456-62. Search in Google Scholar

Schroeder M, Schaumburg B, Mueller Z, Parplys A, Jarczak D, Roedl K, et al. High estradiol and low testosterone levels are associated with critical illness in male but not in female COVID-19 patients: a retrospective cohort study. Emerg Microbes Infect 2021;10(1):1807-18. Search in Google Scholar

Çayan S, Uğuz M, Saylam B, Akbay E. Effect of serum total testosterone and its relationship with other laboratory parameters on the prognosis of coronavirus disease 2019 (COVID-19) in SARS-CoV-2 infected male patients: a cohort study. Aging Male 2020;23(5):1493-503. Search in Google Scholar

Rastrelli G, Di Stasi V, Inglese F, Beccaria M, Garuti M, Di Costanzo D, et al. Low testosterone levels predict clinical adverse outcomes in SARS-CoV-2 pneumonia patients. Andrology 2021;9(1):88-98. Search in Google Scholar

Corona G, Vena W, Pizzocaro A, Pallotti F, Paoli D, Rastrelli G, et al. Andrological effects of SARS-Cov-2 infection: a systematic review and metaanalysis. J Endocrinol Invest 2022;45(12):2207-19. Search in Google Scholar

Dhindsa S, Zhang N, McPhaul MJ, Wu Z, Ghoshal AK, Erlich EC, et al. Association of circulating sex hormones with inflammation and disease severity in patients with COVID-19. JAMA Netw Open 2021;4(5):e2111398. Search in Google Scholar

Zheng S, Zou Q, Zhang D, Yu F, Bao J, Lou B, et al. Serum level of testosterone predicts disease severity of male COVID-19 patients and is related to T-cell immune modulation by transcriptome analysis. Clin Chim Acta 2022;524:132-8. Search in Google Scholar

Yassin A, Sabsigh R, Al-Zoubi RM, Aboumarzouk OM, Alwani M, Nettleship J, et al. Testosterone and COVID-19: An update. Rev Med Virol 2023;33(1):e2395. Search in Google Scholar

Salonia A, Pontillo M, Capogrosso P, Gregori S, Carenzi C, Ferrara AM, et al. Testosterone in males with COVID-19: A 7-month cohort study. Andrology 2022;10(1):34-41. Search in Google Scholar

Li C, Ye Z, Zhang AJX, Chan JFW, Song W, Liu F, et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection by intranasal or intratesticular route induces testicular damage. Clin Infect Dis 2022;75(1):e974-90. Search in Google Scholar

Sansone A, Mollaioli D, Ciocca G, Limoncin E, Colonnello E, Vena W, et al. Addressing male sexual and reproductive health in the wake of COVID-19 outbreak. J Endocrinol Invest 2021;44(2):223-31. Search in Google Scholar

Sengupta P, Dutta S. COVID-19 and hypogonadism: secondary immune responses r ule-over e ndocrine m echanisms. Hum Fertil (Camb) 2023;26(1):182-5. Search in Google Scholar

Li X, Chen Z, Geng J, Mei Q, Li H, Mao C, et al. COVID-19 and male reproduction: a thorny problem. Am J Mens Health 2022;16(1):15579883221074816. Search in Google Scholar

Malkin CJ, Pugh PJ, Jones RD, Kapoor D, Channer KS, Jones TH. The effect of testosterone replacement on endogenous inflammatory cytokines and lipid profiles in hypogonadal men. J Clin Endocrinol Metab 2004;89(7):3313-8. Search in Google Scholar

Zhang L, Zhou L, Bao L, Liu J, Zhu H, Lv Q, et al. SARS-CoV-2 crosses the blood–brain barrier accompanied with basement membrane disruption without tight junctions alteration. Signal Transduct Target Ther 2021;6(1):337. Search in Google Scholar

Koç E, Keseroğlu BB. Does COVID-19 worsen the semen parameters? Early results of a tertiary healthcare center. Urol Int 2021;105(9-10):743-8. Search in Google Scholar

Pourmasumi S, Nazari A, Ahmadi Z, Kouni SN, de Gregorio C, Koniari I, et al. The effect of long covid-19 infection and vaccination on male fertility; a narrative review. Vaccines (Basel) 2022;10(12):1982. Search in Google Scholar

Sergerie M, Mieusset R, Croute F, Daudin M, Bujan L. High risk of temporary alteration of semen parameters after recent acute febrile illness. Fertil Steril 2007;88(4):970.e1-7. Search in Google Scholar

Barda S, Laskov I, Grisaru D, Lehavi O, Kleiman S, Wenkert A, et al. The impact of COVID-19 vaccine on sperm quality. Int J Gynaecol Obstet 2022;158(1):116-20. Search in Google Scholar

Li D, Jin M, Bao P, Zhao W, Zhang S. Clinical characteristics and results of semen tests among men with coronavirus disease 2019. JAMA Netw Open 2020;3(5):e208292. Search in Google Scholar

Delaroche L, Bertine M, Oger P, Descamps D, Damond F, Genauzeau E, et al. Evaluation of SARS-CoV-2 in semen, seminal plasma, and spermatozoa pellet of COVID-19 patients in the acute stage of infection. PLoS One 2021;16(12):e0260187. Search in Google Scholar

Gacci M, Coppi M, Baldi E, Sebastianelli A, Zaccaro C, Morselli S, et al. Semen impairment and occurrence of SARS-CoV-2 virus in semen after recovery from COVID-19. Hum Reprod 2021;36(6):1520-9. Search in Google Scholar

Saylam B, Uguz M, Yarpuzlu M, Efesoy O, Akbay E, Çayan S. The presence of SARS‐CoV‐2 virus in semen samples of patients with COVID‐19 pneumonia. Andrologia 2021;53(8):e14145. Search in Google Scholar

Best JC, Kuchakulla M, Khodamoradi K, Lima TFN, Frech FS, Achua J, et al. Evaluation of SARS-CoV-2 in human semen and effect on total sperm number: a prospective observational study. World J Mens Health 2021;39(3):489-95. Search in Google Scholar

Gat I, Kedem A, Dviri M, Umanski A, Levi M, Hourvitz A, et al. Covid‐19 vaccination BNT162b2 temporarily impairs semen concentration and total motile count among semen donors. Andrology 2022;10(6):1016-22. Search in Google Scholar

Gonzalez DC, Nassau DE, Khodamoradi K, Ibrahim E, Blachman-Braun R, Ory J, et al. Sperm parameters before and after COVID-19 mRNA vaccination. JAMA 2021;326(3):273-4. Search in Google Scholar

Guo L, Zhao S, Li W, Wang Y, Li L, Jiang S, et al. Absence of SARS‐CoV‐2 in semen of a COVID‐19 patient cohort. Andrology 2021;9(1):42-7. Search in Google Scholar

Holtmann N, Edimiris P, Andree M, Doehmen C, Baston-Buest D, Adams O, et al. Assessment of SARS-CoV-2 in human semen – a cohort study. Fertil Steril 2020;114(2):233-8. Search in Google Scholar

Li H, Xiao X, Zhang J, Zafar MI, Wu C, Long Y, et al. Impaired spermatogenesis in COVID-19 patients. EClinicalMedicine 2020;28:100604. Search in Google Scholar

Pan F, Xiao X, Guo J, Song Y, Li H, Patel DP, et al. No evidence of severe acute respiratory syndrome–coronavirus 2 in semen of males recovering from coronavirus disease 2019. Fertil Steril 2020;113(6):1135-9. Search in Google Scholar

Paoli D, Pallotti F, Colangelo S, Basilico F, Mazzuti L, Turriziani O, et al. Study of SARS-CoV-2 in semen and urine samples of a volunteer with positive naso-pharyngeal swab. J Endocrinol Invest 2020;43(12):1819-22. Search in Google Scholar

Paoli D, Pallotti F, Nigro G, Mazzuti L, Hirsch MN, Valli MB, et al. Molecular diagnosis of SARS-CoV-2 in seminal fluid. J Endocrinol Invest 2021;44(12):2675-84. Search in Google Scholar

Rawlings SA, Ignacio C, Porrachia M, Du P, Smith DM, Chaillon A. No evidence of SARS-CoV-2 seminal shedding despite SARS-CoV-2 persistence in the upper respiratory tract. Open Forum Infect Dis 2020;7(8):ofaa325. Search in Google Scholar

Donders GGG, Bosmans E, Reumers J, Donders F, Jonckheere J, Salembier G, et al. Sperm quality and absence of SARS-CoV-2 RNA in semen after COVID- 19 infection: a prospective, observational study and validation of the SpermCOVID test. Fertil Steril 2022;117(2):287-96. Search in Google Scholar

Hamarat MB, Ozkent MS, Yılmaz B, Aksanyar SY, Karabacak K. Effect of SARS-CoV-2 infection on semen parameters. Can Urol Assoc J 2022;16(3):E173-7. Search in Google Scholar

Erbay G, Sanli A, Turel H, Yavuz U, Erdogan A, Karabakan M, et al. Short-term effects of COVID‐19 on semen parameters: A multicenter study of 69 cases. Andrology 2021;9(4):1060-5. Search in Google Scholar

Guo TH, Sang MY, Bai S, Ma H, Wan YY, Jiang XH, et al. Semen parameters in men recovered from COVID-19. Asian J Androl 2021;23(5):479-83. Search in Google Scholar

Depuydt C, Bosmans E, Jonckheere J, Donders F, Ombelet W, Coppens A, et al. SARS-CoV-2 infection reduces quality of sperm parameters: prospective one year follow-up study in 93 patients. EBioMedicine 2023;93:104640. Search in Google Scholar

Haghpanah A, Masjedi F, Alborzi S, Hosseinpour A, Dehghani A, Malekmakan L, et al. Potential mechanisms of SARS‐CoV‐2 action on male gonadal function and fertility: Current status and future prospects. Andrologia 2021;53(1):e13883. Search in Google Scholar

Delli Muti N, Finocchi F, Tossetta G, Salvio G, Cutini M, Marzioni D, et al. Could SARS‐CoV‐2 infection affect male fertility and sexuality? APMIS 2022;130(5):243-52. Search in Google Scholar

Temiz MZ, Dincer MM, Hacibey I, Yazar RO, Celik C, Kucuk SH, et al. Investigation of SARS‐CoV‐2 in semen samples and the effects of COVID‐19 on male sexual health by using semen analysis and serum male hormone profile: A cross‐sectional, pilot study. Andrologia 2021;53(2):e13912. Search in Google Scholar

Murata K, Nakao N, Ishiuchi N, Fukui T, Katsuya N, Fukumoto W, et al. Four cases of cytokine storm after COVID-19 vaccination: Case report. Front Immunol 2022;13:967226. Search in Google Scholar

Drapkina Y, Dolgushina NV, Shatylko TV, Nikolaeva MA, Menzhinskaya IV, Ivanets T, et al. Gam-COVID-Vac (Sputnik V) vaccine has no adverse effect on spermatogenesis in men. Akush Ginekol (Mosk) 2021;7:88-94. Search in Google Scholar

Elhabak DM, Abdelsamie RA, Shams GM. COVID‐19 vaccination and male fertility issues: Myth busted. Is taking COVID‐19 vaccine the best choice for semen protection and male fertility from risky infection hazards? Andrologia 2022;54(11):e14574. Search in Google Scholar

Lifshitz D, Haas J, Lebovitz O, Raviv G, Orvieto R, Aizer A. Does mRNA SARS-CoV-2 vaccine detrimentally affect male fertility, as reflected by semen analysis? Reprod Biomed Online 2022;44(1):145-9. Search in Google Scholar

Olana S, Mazzilli R, Salerno G, Zamponi V, Tarsitano MG, Simmaco M, et al. 4BNT162b2 mRNA COVID‐19 vaccine and semen: What do we know? Andrology 2022;10(6):1023-9. Search in Google Scholar

Reschini M, Pagliardini L, Boeri L, Piazzini F, Bandini V, Fornelli G, et al. COVID-19 vaccination does not affect reproductive health parameters in men. Front Public Health 2022;10:839967. Search in Google Scholar

Rozhivanov RV, Mokrysheva NG. Ejaculate quality and testosterone levels in men vaccinated with Gam-Covid-Vac (Sputnik-V). Russ J Hum Reprod 2021;27(4):22-5. Search in Google Scholar

Safrai M, Herzberg S, Imbar T, Reubinoff B, Dior U, Ben-Meir A. The BNT162b2 mRNA Covid-19 vaccine does not impair sperm parameters. Reprod Biomed Online 2022;44(4):685-8. Search in Google Scholar

Wang M, Yang Q, Zhu L, Jin L. Investigating impacts of CoronaVac vaccination in males on in vitro fertilization: a propensity score matched cohort study. World J Mens Health 2022;40(4):570-9. Search in Google Scholar

Xia W, Zhao J, Hu Y, Fang L, Wu S. Investigate the effect of COVID‐19 inactivated vaccine on sperm parameters and embryo quality in in vitro fertilization. Andrologia 2022;54(6):e14483. Search in Google Scholar

Zaçe D, La Gatta E, Petrella L, Di Pietro ML. The impact of COVID-19 vaccines on fertility – A systematic review and meta-analysis. Vaccine 2022;40(42):6023-34. Search in Google Scholar

Zhu H, Wang X, Zhang F, Zhu Y, Du MR, Tao ZW, et al. Evaluation of inactivated COVID-19 vaccine on semen parameters in reproductive-age males: a retrospective cohort study. Asian J Androl 2022;24(5):441-4. Search in Google Scholar

eISSN:
2719-6313
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Basic Medical Science, other, Clinical Medicine, Surgery, Public Health