Open Access

Progeria (Hutchinson–Gilford syndrome) – review of current literature


Cite

1. Musich PR, Zou Y. Genomic instability and DNA damage responses in progeria arising from defective maturation of prelamin A. Aging (Albany NY) 2009;1(1):28-37. doi: 10.18632/aging.100012.276505919851476 Open DOISearch in Google Scholar

2. Arboleda G, Ramírez N, Arboleda H. The neonatal progeroid syndrome (Wiedemann–Rautenstrauch): a model for the study of human aging? Exp Gerontol 2007;42(10):939-43. doi: 10.1016/j.exger.2007.07.004.17728088 Open DOISearch in Google Scholar

3. Carrero D, Soria-Valles C, López-Otín C. Hallmarks of progeroid syndromes: lessons from mice and reprogrammed cells. Dis Model Mech 2016;9(7):719-35. doi: 10.1242/dmm.024711.495830927482812 Open DOISearch in Google Scholar

4. Méndez-López I, Worman HJ. Inner nuclear membrane proteins: impact on human disease. Chromosoma 2012;121(2):153-67. doi: 10.1007/s00412-012-0360-2.22307332 Open DOISearch in Google Scholar

5. Broers JLV, Ramaekers FCS, Bonne G, Yaou RB, Hutchison CJ. Nuclear lamins: laminopathies and their role in premature ageing. Physiol Rev 2006;86(3):967-1008. doi: 10.1152/physrev.00047.2005.16816143 Open DOISearch in Google Scholar

6. Mattout A, Dechat T, Adam SA, Goldman RD, Gruenbaum Y. Nuclear lamins, disease and aging. Curr Opin Cell Biol 2006;18(3):335-34. doi: 10.1016/j.ceb.2006.03.007.16632339 Open DOISearch in Google Scholar

7. Gruenbaum Y, Margalit A, Goldman RD, Shumaker DK, Wilson KL. The nuclear lamina comes of age. Nature Rev Mol Cell Biol 2005;6(1):21-31. doi: 10.1038/nrm1550.15688064 Open DOISearch in Google Scholar

8. Laminopatie PBJ. Typy lamin. http://www.laminopatie.pl/pl/laminy/laminytypy (20.08.2022). Search in Google Scholar

9. Patni N, Xing C, Agarwal AK, Garg A. Juvenile-onset generalized lipodys-trophy due to a novel heterozygous missense LMNA mutation affecting lamin C. Am J Med Genet A 2017;173(9):2517-21. doi: 10.1002/ajmg.a.38341.559325628686329 Open DOISearch in Google Scholar

10. DeBoy E, Puttaraju M, Jailwala P, Kasoji M, Cam M, Misteli T. Identification of novel RNA isoforms of LMNA. Nucleus 2017;8(5):573-82. doi: 10.1080/19491034.2017.1348449.570326428857661 Open DOISearch in Google Scholar

11. Skoczynska A, Budzisz E, Dana A, Rotsztejn H. New look at the role of progerin in skin aging. Prz Menopauzalny 2015;14(1):53-8. doi: 10.5114/pm.2015.49532.444019826327889 Open DOISearch in Google Scholar

12. Coppedè F. The epidemiology of premature aging and associated comorbidities. Clin Interv Aging 2013;8:1023-32. doi: 10.2147/CIA.S37213. Open DOISearch in Google Scholar

13. Progeria Research Foundation. http://www.progeriaresearch.org (20.08.2022). Search in Google Scholar

14. Payam M. Premature aging syndromes. Encyclopedia of endocrine diseases. Elsevier; 2004. p. 58-64. doi: 10.1016/B0-12-475570-4/00053-6. Open DOISearch in Google Scholar

15. Gordon LB, Brown WT, Collins FS. Hutchinson–Gilford progeria syndrome. In: Adam MP, Everman DB, Mirzaa GM, Pagon RA, Wallace SE, editors. GeneReviews®. Seattle (WA): University of Washington, 1993-2022. Search in Google Scholar

16. Eriksson M, Brown WT, Gordon LB, Glynn MW, Singer J, Scott L, et al. Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome. Nature 2003;423(6937):293-8. doi: 10.1038/nature01629. Open DOISearch in Google Scholar

17. De Sandre-Giovannoli A, Bernard R, Cau P, Navarro C, Amiel J, Boccaccio I, et al. Lamin a truncation in Hutchinson–Gilford progeria. Science 2003;300(5628):2055. doi: 10.1126/science.1084125. Open DOISearch in Google Scholar

18. Vastag B. Cause of progeria’s premature aging found: expected to provide insight into normal aging process. JAMA 2003;289(19):2481-2. doi: 10.1001/jama.289.19.2481. Open DOISearch in Google Scholar

19. Alves DB, Silva JM, Menezes TO, Cavaleiro RS, Tuji FM, Lopes MA, et al. Clinical and radiographic features of Hutchinson–Gilford progeria syndrome: A case report. World J Clin Cases 2014;2(3):67-71. doi: 10.12998/wjcc.v2.i3.67. Open DOISearch in Google Scholar

20. Hennekam RCM. Hutchinson–Gilford progeria syndrome: review of the phenotype. Am J Med Genet A 2006;140(23):2603-24. doi: 10.1002/ajmg.a.313463. Open DOISearch in Google Scholar

21. Merideth MA, Gordon LB, Clauss S, Sachdev V, Smith ACM, Perry MB, et al. Phenotype and course of Hutchinson–Gilford progeria syndrome. N Engl J Med 2008;358(6):592-604. doi: 10.1056/NEJMoa0706898. Open DOISearch in Google Scholar

22. González Morán MG. Síndrome de Progeria de Hutchinson–Gilford. Causas, investigación y tratamientos farmacológicos. Educ Quim 2014;25(4):432-9. doi: 10.1016/S0187-893X(14)70063-1. Open DOISearch in Google Scholar

23. DeBusk FL. The Hutchinson–Gilford progeria syndrome. Report of 4 cases and review of the literature. J Pediatr 1972;80(4):697-724. doi: 10.1016/s0022-3476(72)80229-4. Open DOISearch in Google Scholar

24. Greer MM, Kleinman ME, Gordon LB, Massaro J, D’Agostino RB Sr, Baltrusaitis K, et al. Pubertal Progression in Female Adolescents with Progeria. J Pediatr Adolesc Gynecol 2018;31(3):238-41. doi: 10.1016/j.jpag.2017.12.005.667132129258958 Open DOISearch in Google Scholar

25. Gordon LB, McCarten KM, Giobbie-Hurder A, Machan JT, Campbell SE, Berns SD, et al. Disease progression in Hutchinson–Gilford progeria syndrome: impact on growth and development. Pediatrics 2007;120(4):824-33. doi: 10.1542/peds.2007-1357.17908770 Open DOISearch in Google Scholar

26. Olive M, Harten I, Mitchell R, Beers JK, Djabali K, Cao K, et al. Cardiovascular pathology in Hutchinson–Gilford progeria: correlation with the vascular pathology of aging. Arterioscler Thromb Vasc Biol 2010;30(11):2301-9. doi: 10.1161/ATVBAHA.110.209460.296547120798379 Open DOISearch in Google Scholar

27. Prakash A, Gordon LB, Kleinman ME, Gurary EB, Massaro J, D’Agostino R Sr, et al. Cardiac Abnormalities in Patients With Hutchinson–Gilford Progeria Syndrome. JAMA Cardiol 2018;3(4):326-34. doi: 10.1001/jamacardio.2017.5235.587533229466530 Open DOISearch in Google Scholar

28. Silvera VM, Gordon LB, Orbach DB, Campbell SE, Machan JT, Ullrich NJ. Imaging characteristics of cerebrovascular arteriopathy and stroke in Hutchinson–Gilford progeria syndrome. AJNR Am J Neuroradiol 2013;34(5):1091-7. doi: 10.3174/ajnr.A3341.796463923179651 Open DOISearch in Google Scholar

29. Kieran MW, Gordon L, Kleinman M. New approaches to progeria. Pediatrics 2007;120(4):834-41. doi: 10.1542/peds.2007-1356.17908771 Open DOISearch in Google Scholar

30. Young SG, Fong LG, Michaelis S. Prelamin A, Zmpste24, misshapen cell nuclei, and progeria – new evidence suggesting that protein farnesylation could be important for disease pathogenesis. J Lipid Res 2005;46(12):2531-58. doi: 10.1194/jlr.R500011-JLR200.16207929 Open DOISearch in Google Scholar

31. Toth JI, Yang SH, Qiao X, Beigneux AP, Gelb MH, Moulson CL, et al. Blocking protein farnesyltransferase improves nuclear shape in fibroblasts from humans with progeroid syndromes. Proc Natl Acad Sci USA 2005;102(36):12873-8. doi: 10.1073/pnas.0505767102.119353816129834 Open DOISearch in Google Scholar

32. Capell BC, Erdos MR, Madigan JP, Fiordalisi JJ, Varga R, Conneely KN, et al. Inhibiting farnesylation of progerin prevents the characteristic nuclear blebbing of Hutchinson–Gilford progeria syndrome. Proc Natl Acad Sci USA 2005;102(36):12879-84. doi: 10.1073/pnas.0506001102.120029316129833 Open DOISearch in Google Scholar

33. Mehta IS, Eskiw CH, Arican HD, Kill IR, Bridger JM. Farnesyltransferase inhibitor treatment restores chromosome territory positions and active chromosome dynamics in Hutchinson–Gilford progeria syndrome cells. Genome Biol 2011;12(8):R74. doi: 10.1186/gb-2011-12-8-r74.324561421838864 Open DOISearch in Google Scholar

34. Glynn MW, Glover TW. Incomplete processing of mutant lamin A in Hutchinson–Gilford progeria leads to nuclear abnormalities, which are reversed by farnesyltransferase inhibition. Hum Mol Genet 2005;14(20):2959-69. doi: 10.1093/hmg/ddi326.16126733 Open DOISearch in Google Scholar

35. Yang SH, Qiao X, Fong LG, Young SG. Treatment with a farnesyltransferase inhibitor improves survival in mice with a Hutchinson–Gilford progeria syndrome mutation. Biochim Biophys Acta 2008;1781(1-2):36-9. doi: 10.1016/j.bbalip.2007.11.003.226677418082640 Open DOISearch in Google Scholar

36. Gordon LB, Kleinman ME, Miller DT, Neuberg DS, Giobbie-Hurder A, Gerhard-Herman M, et al. Clinical trial of a farnesyltransferase inhibitor in children with Hutchinson–Gilford progeria syndrome. Proc Natl Acad Sci USA 2012;109(41):16666-71. doi: 10.1073/pnas.1202529109.347861523012407 Open DOISearch in Google Scholar

37. Gordon LB, Massaro J, D’Agostino RB Sr, Campbell SE, Brazier J, Brown WT, et al. Impact of farnesylation inhibitors on survival in Hutchinson–Gil-ford progeria syndrome. Circulation 2014;130(1):27-34. doi: 10.1161/CIRCULATIONAHA.113.008285.408240424795390 Open DOISearch in Google Scholar

38. Dhillon S. Lonafarnib: First Approval. Drugs 2021;81(2):283-9. doi: 10.1007/s40265-020-01464-z.798511633590450 Open DOISearch in Google Scholar

eISSN:
2719-6313
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Basic Medical Science, other, Clinical Medicine, Surgery, Public Health