Cite

1. Fattorusso A, Di Genova L, Dell’Isola GB, Mencaroni E, Esposito S. Autism spectrum disorders and the gut microbiota. Nutrients 2019;11(3):521. doi: 10.3390/nu11030521.647150530823414 Open DOISearch in Google Scholar

2. Doernberg E, Hollander E. Neurodevelopmental disorders (ASD and ADHD): DSM-5, ICD-10, and ICD-11. CNS Spectr 2016;21(4):295-9. doi: 10.1017/S1092852916000262.27364515 Open DOISearch in Google Scholar

3. Rish N, Hoffmann TJ, Anderson M, Croen LA, Grether JK, Windham GC. Familial recurrence of autism spectrum disorder: evaluating genetic and environmental contributions. Am J Psychiatry 2014;171(11):1206-13. doi: 10.1176/appi.ajp.2014.13101359.24969362 Open DOISearch in Google Scholar

4. Adams JB, Johansen LJ, Powell LD, Quig D, Rubin RA. Gastrointestinal flora and gastrointestinal status in children with autism – comparisons to typical children and correlation with autism severity. BMC Gastroenterol 2011;11:22. doi: 10.1186/1471-230X-11-22.307235221410934 Open DOISearch in Google Scholar

5. Roussin L, Prince N, Perez-Pardo P, Kraneveld AD, Rabot S, Naudon L. Role of the gut microbiota in the pathophysiology of autism spectrum disorder: clinical and preclinical evidence. Microorganisms 2020;8(9):1369. doi: 10.3390/microorganisms8091369.756317532906656 Open DOISearch in Google Scholar

6. Wang L, Conlon MA, Christophersen CT, Sorich MJ, Angley MT. Gastrointestinal microbiota and metabolite biomarkers in children with autism spectrum disorders. Biomark Med 2014;8(3):331-44. doi: 10.2217/bmm.14.12.24712423 Open DOISearch in Google Scholar

7. Garcia-Gutierrez E, Narbad A, Rodríguez JM. Autism spectrum disorder associated with gut microbiota at immune, metabolomic, and neuroactive level. Front Neurosci 2020;14:578666. doi: 10.3389/fnins.2020.578666.757822833117122 Open DOISearch in Google Scholar

8. De Angelis M, Francavilla R, Piccolo M, De Giacomo A, Gobbetti M. Autism spectrum disorders and intestinal microbiota. Gut Microbes 2015;6(3):207-13. doi: 10.1080/19490976.2015.1035855.461690825835343 Open DOISearch in Google Scholar

9. Navarro F, Liu Y, Rhoads JM. Can probiotics benefit children with autism spectrum disorders? World J Gastroenterol 2016;22(46):10093-102. doi: 10.3748/wjg.v22.i46.10093.515516828028357 Open DOISearch in Google Scholar

10. Eshraghi R, Davies C, Iyengar R, Perez L, Mittal R, Eshraghi AA. Gut-induced inflammation during development may compromise the blood-brain barrier and predispose to autism spectrum disorder. J Clin Med 2020;10(1):27. doi: 10.3390/jcm10010027.779477433374296 Open DOISearch in Google Scholar

11. Flint HJ. The impact of nutrition on the human microbiome. Nutr Rev 2012;70 Suppl 1:10-3. doi: 10.1111/j.1753-4887.2012.00499.x.22861801 Open DOISearch in Google Scholar

12. Generoso JS, Giridharan VV, Lee J, Macedo D, Barichello T. The role of the microbiota-gut-brain axis in neuropsychiatric disorders. Braz J Psychiatry 2021;43(3):293-305. doi: 10.1590/1516-4446-2020-0987.813639132667590 Open DOISearch in Google Scholar

13. Q J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010;464(7285):59-65. doi: 10.1038/nature08821.377980320203603 Open DOISearch in Google Scholar

14. Grice EA, Segre JA. The human microbiome: our second genome. Annu Rev Genomics Hum Genet 2012;13:151-70. doi: 10.1146/annurev-genom-090711-163814.351843422703178 Open DOISearch in Google Scholar

15. Rose C, Parker A, Jefferson B, Cartmell E. The characterization of feces and urine: a review of the literature to inform advanced treatment technology. Crit Rev Environ Sci Technol 2015;45(17):1827-79. doi: 10.1080/10643389.2014.1000761.450099526246784 Open DOISearch in Google Scholar

16. Dominguez-Bello M, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. PNAS 2010;107(26):11971-5. doi: 10.1073/pnas.1002601107.290069320566857 Open DOISearch in Google Scholar

17. Redondo-Useros N, Nova E, González-Zancada N, Díaz LE, Gómez-Martínez S, Marcos A. Microbiota and lifestyle: a special focus on diet. Nutrients 2020;12(6):1776. doi: 10.3390/nu12061776.735345932549225 Open DOISearch in Google Scholar

18. Hasan N, Yang H. Factors affecting the composition of the gut microbiota, and its modulation. PeerJ 2019;7:e7502. doi: 10.7717/peerj.7502.669948031440436 Open DOISearch in Google Scholar

19. Zhu X, Han Y, Du J, Liu R, Jin K, Yi W. Microbiota-gut-brain axis and the central nervous system. Oncotarget 2017;8(32):53829-38. doi: 10.18632/oncotarget.17754.558115328881854 Open DOISearch in Google Scholar

20. DeGruttola AK, Low D, Mizoguchi A, Mizoguchi E. Current understanding of dysbiosis in disease in human and animal models. Inflamm Bowel Dis 2016;22(5):1137-50. doi: 10.1097/MIB.0000000000000750.483853427070911 Open DOISearch in Google Scholar

21. Olesen SW, Alm EJ. Dysbiosis is not an answer. Nat Microbiol 2016;1:16228. doi: 10.1038/nmicrobiol.2016.228.27886190 Open DOISearch in Google Scholar

22. Finegold SM, Downes J, Summanen PH. Microbiology of regressive autism. Anaerobe 2012;18(2):260-2. doi: 10.1016/j.anaerobe.2011.12.018.22202440 Open DOISearch in Google Scholar

23. Hua X, Zhu J, Yang T, Guo M, Li Q, Chen J, et al. The gut microbiota and associated metabolites are altered in sleep disorder of children with autism spectrum disorders. Front Psychiatry 2020;11:855. doi: 10.3389/fpsyt.2020.00855.749362332982808 Open DOISearch in Google Scholar

24. Silva YP, Bernardi A, Frozza RL. The Role of short-chain fatty acids from gut microbiota in gut-brain communication. Front Endocrinol (Lausanne) 2020;11:25. doi: 10.3389/fendo.2020.00025.700563132082260 Open DOISearch in Google Scholar

25. Tomova A, Husarova V, Lakatosova S, Bakos J, Vlkova B, Babinska K, et al. Gastrointestinal microbiota in children with autism in Slovakia. Physiol Behav 2015;138:179-87. doi: 10.1016/j.physbeh.2014.10.033.25446201 Open DOISearch in Google Scholar

26. Ding X, Xu Y, Zhang X, Zhang L, Duan G, Song C, et al. Gut microbiota changes in patients with autism spectrum disorders. J Psychiatr Res 2020;129:149-59. doi: 10.1016/j.jpsychires.2020.06.032.32912596 Open DOISearch in Google Scholar

27. Iglesias-Vázquez L, Van Ginkel Riba G, Arija V, Canals J. Composition of gut microbiota in children with autism spectrum disorder: a systematic review and meta-analysis. Nutrients 2020;12(3):792. doi: 10.3390/nu12030792.714635432192218 Open DOISearch in Google Scholar

28. Williams BL, Hornig M, Parekh T, Ian Lipkin WI. Application of novel PCR-based methods for detection, quantitation, and phylogenetic characterization of Sutterella species in intestinal biopsy samples from children with autism and gastrointestinal disturbances. mBio 2012;3(1):e00261-11. doi: 10.1128/mBio.00261-11.325276322233678 Open DOISearch in Google Scholar

29. Finegold SM, Dowd SE, Gontcharova V, Liu C, Henley KE, Wolcott RD, et al. Pyrosenquencing study of fecal microflora of autistic and control children. Anaerobe 2010;16(4):444-53. doi: 10.1016/j.anaerobe.2010.06.008.20603222 Open DOISearch in Google Scholar

30. Ding HT, Taur Y, Walkup JT. Gut microbiota and autism: key concepts and findings. J Autism Dev Disord 2017;47(2):480-9. doi: 10.1007/s10803-016-2960-9.27882443 Open DOISearch in Google Scholar

31. Yang XL, Liang S, Zou MY, Sun CH, Han P, Jiang XT, et al. Are gastrointestinal and sleep problems associated with behavioral symptoms of autism spectrum disorder? Psychiatry Res 2018;259:229-35. doi: 10.1016/j.psychres.2017.10.040.29091821 Open DOISearch in Google Scholar

32. Argou-Cardozo I, Zeidán-Chuliá F. Clostridium bacteria and autism spectrum conditions: a systematic review and hypothetical contribution of environmental glyphosate levels. Med Sci (Basel) 2018;6(2):29. doi: 10.3390/medsci6020029.602456929617356 Open DOISearch in Google Scholar

33. Strati F, Cavalieri D, Albanese D, De Felice C, Donati C, Hayek J, et al. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome 2017;5(1):24. doi: 10.1186/s40168-017-0242-1.532069628222761 Open DOISearch in Google Scholar

34. Rose S, Nyiazov DM, Rossignol DA, Goldenthal M, Kahler SG, Frye RE. Clinical and molecular characteristics of mitochondrial dysfunction in autism spectrum disorder. Mol Diagn Ther 2018;22(5):571-93. doi: 10.1007/s40291-018-0352-x.613244630039193 Open DOISearch in Google Scholar

35. Walker SJ, Beavers DP, Fortunato J, Krigsman A. A putative blood-based biomarker for autism spectrum disorder-associated ileocolitis. Sci Rep 2016;6:35820. doi: 10.1038/srep35820.507331727767057 Open DOISearch in Google Scholar

36. Doenyas C. Gut microbiota, inflammation, and probiotics on neural development in autism spectrum disorder. Neuroscience 2018;374:271-86. doi: 10.1016/j.neuroscience.2018.01.060.29427656 Open DOISearch in Google Scholar

37. Viggiano D, Ianiro G, Vanella G, Bibbò S, Bruno G, Simeone G, et al. Gut barrier in health and disease: focus on childhood. Eur Rev Med Pharmacol Sci 2015;19(6):1077-85. Search in Google Scholar

38. Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 2013;155(7):1451-63. doi: 10.1016/j.cell.2013.11.024.389739424315484 Open DOISearch in Google Scholar

39. Maher P. Methylglyoxal, advanced glycation end products and autism: is there a connection? Med Hypotheses 2012;78(4):548-52. doi: 10.1016/j.mehy.2012.01.032.22325990 Open DOISearch in Google Scholar

40. Li Q, Han Y, Dy ABC, Hagerman RJ. The gut microbiota and autism spectrum disorders. Front Cell Neurosci 2017;11:120. doi: 10.3389/fncel.2017.00120.540848528503135 Open DOISearch in Google Scholar

41. Aschwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah I, Van de Water J. Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain Behav Immun 2011;25(1):40-5. doi: 10.1016/j.bbi.2010.08.003.299143220705131 Open DOISearch in Google Scholar

42. Cao X, Liu K, Liu J, Liu YW, Xu L, Wang H, et al. Dysbiotic gut microbiota and dysregulation of cytokine profile in children and teens with autism spectrum disorder. Front Neurosci 2021;15:635925. doi: 10.3389/fnins.2021.635925.790287533642989 Open DOISearch in Google Scholar

43. Holingue C, Newill C, Lee LC, Pasricha PJ, Fallin MD. Gastrointestinal symptoms in autism spectrum disorder: a review of the literature on ascertainment and prevalence. Autism Res 2018;11(1):24-36. doi: 10.1002/aur.1854.577335428856868 Open DOISearch in Google Scholar

44. Srikantha P, Mohajeri MH. The possible role of the microbiota-gut-brain-axis in autism spectrum disorder. Int J Mol Sci 2019;20(9):2115. doi: 10.3390/ijms20092115.653923731035684 Open DOISearch in Google Scholar

45. Marler S, Ferguson BJ, Lee EB, Peters B, Williams KC, McDonnell E, et al. Association of rigid-compulsive behavior with functional constipation in autism spectrum disorder. J Autism Dev Disord 2017;47(6):1673-81. doi: 10.1007/s10803-017-3084-6.552621528289979 Open DOISearch in Google Scholar

46. Asbjornsdottir B, Snorradottir H, Andresdottir E, Fasano A, Lauth B, Gudmundsson L, et al. Zonulin-dependent intestinal permeability in children diagnosed with mental disorders: a systematic review and meta-analysis. Nutrients 2020;12(7):1982. doi: 10.3390/nu12071982.739994132635367 Open DOISearch in Google Scholar

47. Kang DW, Park JG, Ilhan ZE, Wallstrom G, Labaer J, Adams JB, et al. Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS One 2013;8(7):e68322. doi: 10.1371/journal.pone.0068322.370085823844187 Open DOISearch in Google Scholar

48. Macfabe DF. Short-chain fatty acid fermentation products of the gut micro-biome: implications in autism spectrum disorders. Microb Ecol Health Dis 2012;23(19260):1-25. doi: 10.3402/mehd.v23i0.19260.374772923990817 Open DOISearch in Google Scholar

49. Alshammari MK, AlKhulaifi MM, Al Farraj DA, Somily AM, Albarrag AM. Incidence of Clostridium perfringens and its toxin genes in the gut of children with autism spectrum disorder. Anaerobe 2020;61:102114. doi: 10.1016/j.anaerobe.2019.102114.31704282 Open DOISearch in Google Scholar

50. Gabriele S, Sacco R, Cerullo S, Neri C, Urbani A, Tripi G, et al. Urinary p-cresol is elevated in young French children with autism spectrum disorder: a replication study. Biomarkers 2014;19(6):463-70. doi: 10.3109/1354750X.2014.936911.25010144 Open DOISearch in Google Scholar

51. MacFabe DF. Enteric short-chain fatty acids: microbial messengers of metabolism, mitochondria, and mind: implications in autism spectrum disorders. Microbial Ecol Health Dis 2015;26:28177. doi: 10.3402/mehd.v26.28177.445109826031685 Open DOISearch in Google Scholar

52. Tran SM, Mohajeri MH. The role of gut bacterial metabolites in brain development, aging and disease. Nutrients 2021;13(3):732. doi: 10.3390/nu13030732.799651633669008 Open DOISearch in Google Scholar

53. 5MacFabe DF, Cain NE, Boon F, Ossenkopp KP, Cain DP. Effects of the enteric bacterial metabolic product propionic acid on object-directed behavior, social behavior, cognition, and neuroinflammation in adolescent rats: Relevance to autism spectrum disorder. Behav Brain Res 2011;217(1):47-54. doi: 10.1016/j.bbr.2010.10.005.20937326 Open DOISearch in Google Scholar

54. Hong J, Jia Y, Pan S, Jia L, Li H, Han Z, et al. Butyrate alleviates high fat diet-induced obesity through activation of adiponectin-mediated pathway and stimulation of mitochondrial function in the skeletal muscle of mice. Oncotarget 2016;7(35):56071-82. doi: 10.18632/oncotarget.11267.530289727528227 Open DOISearch in Google Scholar

55. Shimmura C, Suda S, Tsuchiya KJ, Hashimoto K, Ohno K, Matsuzaki H, et al. Alteration of plasma glutamate and glutamine levels in children with high-functioning autism. PLoS One 2011;6(10):e25340. doi: 10.1371/journal.pone.0025340.318777021998651 Open DOISearch in Google Scholar

56. Noto A, Fanos V, Barberini L, Grapov D, Fattuoni C, Zaffanello M, et al. The urinary metabolomics profile of an Italian autistic children population and their unaffected siblings. J Matern Fetal Neonatal Med 2014;27 Suppl 2:46-52. doi: 10.3109/14767058.2014.954784.25284177 Open DOISearch in Google Scholar

57. Israelyan N, Margolis KG. Serotonin as a link between the gut-brain-microbiome axis in autism spectrum disorders. Pharmacol Res 2018;132:1-6. doi: 10.1016/j.phrs.2018.03.020.636835629614380 Open DOISearch in Google Scholar

58. Marler S, Ferguson BJ, Lee EB, Peters B, Williams KC, McDonnell E, et al. Brief report: Whole blood serotonin levels and gastrointestinal symptoms in autism spectrum disorder. J Autism Dev Disord 2016;46(3):1124-30. doi: 10.1007/s10803-015-2646-8.485270326527110 Open DOISearch in Google Scholar

59. Golubeva AV, Joyce SA, Moloney G, Burokas A, Sherwin E, Arboleya S, et al. Microbiota-related changes in bile acid & tryptophan metabolism are associated with gastrointestinal dysfunction in a mouse model of autism. EBioMedicine 2017;24:166-78. doi: 10.1016/j.ebiom.2017.09.020.565213728965876 Open DOISearch in Google Scholar

60. de Theije CG, Wu J, da Silva SL, Kamphuis PJ, Garssen J, Korte SM, et al. Pathways underlying the gut-to-brain connection in autism spectrum disorders as future targets for disease management. Eur J Pharmacol 2011;668 Suppl 1:S70-80. doi: 10.1016/j.ejphar.2011.07.013.21810417 Open DOISearch in Google Scholar

61. Kraneveld AD, Szklany K, de Theije CG, Garssen J. Gut-to-brain axis in autism spectrum disorders: central role for the microbiome. Int Rev Neurobiol 2016;131:263-87. doi: 10.1016/bs.irn.2016.09.001.27793223 Open DOISearch in Google Scholar

62. Rose S, Bennuri SC, Murray KF, Buie T, Winter H, Frye RE. Mitochondrial dysfunction in the gastrointestinal mucosa of children with autism: A blinded case-control study. PLoS One 2017;12(10):e0186377. doi: 10.1371/journal.pone.0186377.564025129028817 Open DOISearch in Google Scholar

63. Ansel A, Rosenzweig JP, Zisman PD, Melamed M, Gesundheit B. Variation in Gene Expression in Autism Spectrum Disorders: An Extensive Review of Transcriptomic Studies. Front Neurosci 2017;10:601. doi: 10.3389/fnins.2016.00601.521481228105001 Open DOISearch in Google Scholar

64. Madore C, Leyrolle Q, Lacabanne C, Benmamar-Badel A, Joffre C, Nadjar A, et al. Neuroinflammation in autism: plausible role of maternal inflammation, dietary omega 3, and microbiota. Neural Plast 2016;2016:3597209. doi: 10.1155/2016/3597209.509327927840741 Open DOISearch in Google Scholar

65. Carter CJ, Blizard RA. Autism genes are selectively targeted by environmental pollutants including pesticides, heavy metals, bisphenol A, phthalates and many others in food, cosmetics or household products. Neurochem Int 2016;S0197-0186(16)30197-8. doi: 10.1016/j.neuint.2016.10.011.27984170 Open DOISearch in Google Scholar

66. Vuong HE, Hsiao EY. Emerging roles for the gut microbiome in autism spectrum disorder. Biol Psychiatry 2017;81(5):411-23. doi: 10.1016/j.biopsych.2016.08.024.528528627773355 Open DOISearch in Google Scholar

67. Rademacher S, Eickholt BJ. PTEN in autism and neurodevelopmental disorders. Cold Spring Harb Perspect Med 2019;1;9(11):a036780. doi: 10.1101/cshperspect.a036780.682439931427284 Open DOISearch in Google Scholar

68. Zhou J, Parada LF. PTEN signaling in autism spectrum disorders. Curr Opin Neurobiol 2012;22(5):873-9. doi: 10.1016/j.conb.2012.05.004.22664040 Open DOISearch in Google Scholar

69. Spinelli L, Black FM, Berg JN, Eickholt BJ, Leslie NR. Functionally distinct groups of inherited PTEN mutations in autism and tumour syndromes. J Med Genet 2015;52(2):128-34. doi: 10.1136/jmedgenet-2014-102803.431693225527629 Open DOISearch in Google Scholar

70. Feng C, Chen Y, Zhang Y, Yan Y, Yang M, Gui H, et al. PTEN regulates mitochondrial biogenesis via the AKT/GSK-3β/PGC-1α pathway in autism. Neuroscience 2021;15;465:85-94. doi: 10.1016/j.neuroscience.2021.04.010.33895342 Open DOISearch in Google Scholar

71. Gonzales J, Marchix J, Aymeric L, Le Berre-Scoul C, Zoppi J, Bordron P, et al. Fecal supernatant from adult with autism spectrum disorder alters digestive functions, intestinal epithelial barrier, and enteric nervous system. Microorganisms 2021;9(8):1723. doi: 10.3390/microorganisms9081723.839984134442802 Open DOISearch in Google Scholar

72. Bernier R, Golzio C, Xiong B, Stessman HA, Coe BP, Penn O, et al. Disruptive CHD8 mutations define a subtype of autism early in development. Cell 2014;158(2):263-76. doi: 10.1016/j.cell.2014.06.017.413692124998929 Open DOISearch in Google Scholar

73. Shteyer E, Edvardson S, Wynia-Smith SL, Pierri CL, Zangen T, Hashavya S, et al. Truncating mutation in the nitric oxide synthase 1 gene is associated with infantile achalasia. Gastroenterology 2015;148(3):533-6.e4. doi: 10.1053/j.gastro.2014.11.044.25479138 Open DOISearch in Google Scholar

74. Hosie S, Ellis M, Swaminathan M, Ramalhosa F, Seger GO, Balasuriya GK, et al. Gastrointestinal dysfunction in patients and mice expressing the autism-associated R451C mutation in neuroligin-3. Autism Res 2019;12(7):1043-56. doi: 10.1002/aur.2127.660636731119867 Open DOISearch in Google Scholar

75. Zheng Y, Verhoeff TA, Perez Pardo P, Garssen J, Kraneveld AD. The gut-brain axis in autism spectrum disorder: a focus on the metalloproteases ADAM10 and ADAM17. Int J Mol Sci 2020;22(1):118. doi:10.3390/ijms22010118.779633333374371 Open DOISearch in Google Scholar

76. Isolauri E, Salminen S, Ouwehand AC. Microbial-gut interactions in health and disease. Probiotics. Best Pract Res Clin Gastroenterol 2004;18(2):299-313. doi: 10.1016/j.bpg.2003.10.006.15123071 Open DOISearch in Google Scholar

77. Santocchi E, Guiducci L, Prosperi M, Calderoni S, Gaggini M, Apicella F, et al. Effects of probiotic supplementation on gastrointestinal, sensory and core symptoms in autism spectrum disorders: a randomized controlled trial. Front Psychiatry 2020;11:550593. doi: 10.3389/fpsyt.2020.550593.754687233101079 Open DOISearch in Google Scholar

78. Critchfield JW, van Hemert S, Ash M, Mulder L, Ashwood P. The potential role of probiotics in the management of childhood autism spectrum disorders. Gastroenterol Res Pract 2011;2011:161358. doi: 10.1155/2011/161358.320565922114588 Open DOISearch in Google Scholar

79. Wegh CAM, Geerlings SY, Knol J, Roeselers G, Belzer C. Postbiotics and their potential applications in early life nutrition and beyond. Int J Mol Sci 2019;20(19):4673. doi: 10.3390/ijms20194673.680192131547172 Open DOISearch in Google Scholar

eISSN:
2719-6313
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Basic Medical Science, other, Clinical Medicine, Surgery, Public Health