Open Access

Self-adhesive, bulk-fill bioactive materials as an alternative to silver amalgam in restorative dentistry


Cite

1. Czarnetzki A, Ehrhardt S. Re-dating the Chinese amalgam-filling of teeth in Europe. Int J Anthropol 1990;5(4):325-32. Search in Google Scholar

2. Westcott A. Report of the Onondaga County Medical Society, on “Mineral Paste”. Am J Dent Sci 1844;4(3):175-201. Search in Google Scholar

3. Bharti R, Wadhwani KK, Tikku AP, Chandra A. Dental amalgam: an update. J Conserv Dent 2010;13(4):204-8.10.4103/0972-0707.73380 Search in Google Scholar

4. Francois P, Fouquet V, Attal JP, Dursun E. Commercially available fluoride-releasing retorative materials: a review and a proposal for classification. Materials (Basel) 2020;13(10):2313.10.3390/ma13102313 Search in Google Scholar

5. Anusavice KJ, Phillips RW. Phillips’ science of dental materials. St. Louis: Saundres; 2003. Search in Google Scholar

6. Science for environment policy. In-depth report 15: tackling mercury pollution in the EU and worldwide. Brussels: European Commission; 2017. p. 72. Search in Google Scholar

7. van Meerbeek B, Frankenberger R. Editorial: on our way towards self-adhesive restorative materials? J Adhes Dent 2019;21(4):295-6. Search in Google Scholar

8. Wilson AD, Kent BE. The glass-ionomer cement. A new translucent dental filling material. J Appl Chem Biotechnol 2007;21(11):313.10.1002/jctb.5020211101 Search in Google Scholar

9. Hurrell-Gillingham K, Reaney IM, Miller CA, Crawford A, Hatton PV. Devitrification of ionomer glass and its effect on the in vitro biocompatibility of glass-ionomer cements. Biomaterials 2003;24(18):3153-60.10.1016/S0142-9612(03)00124-8 Search in Google Scholar

10. Sidhu SK, Nicholson JW. A review of glass-ionomer cements for clinical dentistry. J Funct Biomater 2016;7(3):16.10.3390/jfb7030016504098927367737 Search in Google Scholar

11. Najeeb S, Khurshid Z, Zafar MS, Khan AS, Zohaib S, Martí JMN, et al. Modifications in glass ionomer cements: nano-sized fillers and bioactive nanoceramics. Int J Mol Sci 2016;17(7):1134.10.3390/ijms17071134496450727428956 Search in Google Scholar

12. Prabhakar AR, Sekhar VR, Kurthukoti AJ. Leaching of ions from materials used in alternative restorative technique under neutral and acidic conditions: a comparative evaluation. J Clin Pediatr Dent 2009;34(2):125-30.10.17796/jcpd.34.2.y0860544254x737120297702 Search in Google Scholar

13. Watson TF, Atmeh AR, Sajini S, Cook RJ, Festy F. Present and future of glass-ionomers and calcium-silicate cements as bioactive materials in dentistry: biophotonics-based interfacial analyses in health and disease. Dent Mater 2014;30(1):50-61.10.1016/j.dental.2013.08.202388579924113131 Search in Google Scholar

14. Momoi Y, Hirosaki K, Kohno A, McCabe JF. Flexural properties of resin-modified “hybrid” glass-ionomers in comparison with conventional acid-base glass-ionomers. Dent Mater J 1995;14(2):109-19.10.4012/dmj.14.1098940550 Search in Google Scholar

15. de Gee AJ, van Duinen RN, Werner A, Davidson CL. Early and long-term wear of conventional and resin-modified glass ionomers. J Dent Res 1996;75(8):1613-9.10.1177/002203459607500814018906131 Search in Google Scholar

16. Mickenautsch S. High-viscosity glass-ionomer cements for direct posterior tooth restorations in permanent teeth: the evidence in brief. J Dent 2016;55:121-3.10.1016/j.jdent.2016.10.007 Search in Google Scholar

17. Guggenberger R, May R, Stefan KP. New trends in glass-ionomer chemistry. Biomaterials 1998;19(6):479-83.10.1016/S0142-9612(97)00127-0 Search in Google Scholar

18. Yap AUJ, Pek YS, Cheang P. Physico-mechanical properties of a fast-set highly viscous GIC restorative. J Oral Rehabil 2003;30(1):1-8.10.1046/j.1365-2842.2003.01006.x12485377 Search in Google Scholar

19. Wilson AD, Hill RG, Warrens CP, Lewis BG. The influence of polyacid molecular weight on some properties of glass-ionomer cements. J Dent Res 1989;68(2):89-94.10.1177/002203458906800214012918140 Search in Google Scholar

20. de Caluwé T, Vercruysse CWJ, Fraeyman S, Verbeeck RMH. The influence of particle size and fluorine content of aluminosilicate glass on the glass ionomer cement properties. Dent Mater 2014;30(9):1029-38.10.1016/j.dental.2014.06.00325002141 Search in Google Scholar

21. Pires RA, Nunes TG, Abrahams I, Hawkes GE. The role of aluminium and silicon in the setting chemistry of glass ionomer cements. J Mater Sci Mater Med 2008;19(4):1687-92.10.1007/s10856-007-3251-y17914623 Search in Google Scholar

22. Corralo DJ, Maltz M. Clinical and ultrastructural effects of different liners/restorative materials on deep carious dentin: a randomized clinical trial. Caries Res 2013;47(3):243-50.10.1159/00034564823343804 Search in Google Scholar

23. Frankenberger R, Sindel J, Krämer N. Viscous glass-ionomer cements: a new alternative to amalgam in the primary dentition? Quintessence Int 1997;28(10):667-76. Search in Google Scholar

24. Oral O, Lassila LV, Kumbuloglu O, Vallittu PK. Bioactive glass particulate filler composite: Effect of coupling of fillers and filler loading on some physical properties. Dent Mater 2014;30(5):570-7.10.1016/j.dental.2014.02.01724655591 Search in Google Scholar

25. Nakornchai N, Arksornnukit M, Kamonkhantikul K, Takahashi H. The pH effect of solvent in silanization on fluoride released and mechanical properties of heat-cured acrylic resin containing fluoride-releasing filler. Dent Mater J 2016;35(3):440-6.10.4012/dmj.2015-40327252000 Search in Google Scholar

26. Itota T, Nakatsuka T, Tanaka K, Tashiro Y, McCabe JF, Yoshiyama M. Neutralizing effect by resin-based materials containing silane-coated glass fillers. Dent Mater J 2010;29(4):362-8.10.4012/dmj.2009-10820610877 Search in Google Scholar

27. Miyata N, Matsuura W, Kokubo T, Nakamura T. Mechanical behavior of bioactive composite cements consisting of resin and glass-ceramic powder in a simulated body fluid: effect of silane coupling agent. J Mater Sci Mater Med 2004;15(9):1013-20.10.1023/B:JMSM.0000042687.03494.ad Search in Google Scholar

28. Moberg M, Brewster J, Nicholson J, Roberts H. Physical property investigation of contemporary glass ionomer and resin-modified glass ionomer restorative materials. Clin Oral Investig 2019;23(3):1295-308.10.1007/s00784-018-2554-3 Search in Google Scholar

29. Berzins DW, Abey S, Costache MC, Wilkie CA, Roberts HW. Resin-modified glass-ionomer setting reaction competition. J Dent Res 2010;89(1):82-6.10.1177/0022034509355919 Search in Google Scholar

30. Mustafa R, Alshali RZ, Silikas N. The effect of desiccation on water sorption, solubility and hygroscopic volumetric expansion of dentine replacement materials. Dent Mater 2018;34(8):e205-13.10.1016/j.dental.2018.05.012 Search in Google Scholar

31. Cattani-Lorente MA, Dupuis V, Moya F, Payan J, Meyer JM. Comparative study of the physical properties of a polyacid-modified composite resin and a resin-modified glass ionomer cement. Dent Mater 1999;15(1):21-32.10.1016/S0109-5641(99)00010-X Search in Google Scholar

32. Mousavinasab SM, Meyers I. Fluoride release by glass ionomer cements, compomer and giomer. Dent Res J (Isfahan) 2009;6(2):75-81. Search in Google Scholar

33. Nigam AG, Jaiswal J, Murthy R, Pandey R. Estimation of fluoride release from various dental materials in different media – an in vitro study. Int J Clin Pediatr Dent 2009;2(1):1-8.10.5005/jp-journals-10005-1033408655125206091 Search in Google Scholar

34. Zhou SL, Zhou J, Watanabe S, Watanabe K, Wen LY, Xuan K. In vitro study of the effects of fluoride-releasing dental materials on remineralization in an enamel erosion model. J Dent 2012;40(3):255-63.10.1016/j.jdent.2011.12.01622227269 Search in Google Scholar

35. Opal S, Garg S, Sharma D, Dhindsa A, Jatana I. In vivo effect of calcium hydroxide and resin-modified glass ionomer cement on carious dentin in young permanent molars: an ultrastructural and macroscopic study. Pediatr Dent 2017;39(1):1-8. Search in Google Scholar

36. Peutzfeldt A. Compomers and glass ionomers: bond strength to dentin and mechanical properties. Am J Dent 1996;9(6):259-63. Search in Google Scholar

37. de Gee AJ, van Duinen RN, Werner A, Davidson CL. Early and long-term wear of conventional and resin-modified glass ionomers. J Dent Res 1996;75(8):1613-9.10.1177/002203459607500814018906131 Search in Google Scholar

38. Opdam NJM, Bronkhorst EM, Roeters JM, Loomans BAC. Longevity and reasons for failure of sandwich and total-etch posterior composite resin restorations. J Adhes Dent 2007;9(5):469-75. Search in Google Scholar

39. Boing TF, de Geus JL, Wambier LM, Loguercio AD, Reis A, Gomes OMM. Are glass-ionomer cement restorations in cervical lesions more long-lasting than resin-based composite resins? A systematic review and meta-analysis. J Adhes Dent 2018;20(5):435-52. Search in Google Scholar

40. Peutzfeldt A. Resin composites in dentistry: the monomer systems. Eur J Oral Sci 1997;105(2):97-116.10.1111/j.1600-0722.1997.tb00188.x9151062 Search in Google Scholar

41. Pratap B, Gupta RK, Bhardwaj B, Nag M. Resin based restorative dental materials: characteristics and future perspectives. Jpn Dent Sci Rev 2019;55(1):126-38.10.1016/j.jdsr.2019.09.004681987731687052 Search in Google Scholar

42. Ferracane JL. Resin composite – state of the art. Dent Mater 2011;27(1):29-38.10.1016/j.dental.2010.10.020 Search in Google Scholar

43. Bayne SC. Beginnings of the dental composite revolution. J Am Dent Assoc 2013;144(8):880-4.10.14219/jada.archive.2013.0205 Search in Google Scholar

44. Vallittu PK, Boccaccini AR, Hupa L, Watts DC. Bioactive dental materials – do they exist and what does bioactivity mean? Dent Mater 2018;34(5):693-4. Search in Google Scholar

45. Nicholson JW. Polyacid-modified composite resins (“compomers”) and their use in clinical dentistry. Dent Mater 2007;23(5):615-22.10.1016/j.dental.2006.05.002 Search in Google Scholar

46. Young AM, Rafeeka SA, Howlett JA. FTIR investigation of monomer polymerisation and polyacid neutralisation kinetics and mechanisms in various aesthetic dental restorative materials. Biomaterials 2004;25(5):823-33.10.1016/S0142-9612(03)00599-4 Search in Google Scholar

47. Musanje L, Shu M, Darvell BW. Water sorption and mechanical behaviour of cosmetic direct restorative materials in artificial saliva. Dent Mater 2001;17(5):394-401.10.1016/S0109-5641(00)00097-X Search in Google Scholar

48. Ilie N, Hickel R. Investigations on mechanical behaviour of dental composites. Clin Oral Investig 2009;13(4):427-38.10.1007/s00784-009-0258-419242739 Search in Google Scholar

49. Mass E, Hassan A, Zilberman U. Long-term in vivo effect of various restorative materials on enamel and dentin of primary molars. Quintessence Int 2017;48(8):633-8. Search in Google Scholar

50. de la Peña VA, Darriba IL, Valea MC. Long-term clinical evaluation of Dyract compomer in the restoration of non-caries cervical lesions: a 20-year retrospective study. Quintessence Int 2017;48(9):689-94. Search in Google Scholar

51. van Dijken JW. 3-year clinical evaluation of a compomer, a resin-modified glass ionomer and a resin composite in Class III restorations. Am J Dent 1996;9(5):195-8. Search in Google Scholar

52. Gonulol N, Ozer S, Tunç ES. Water sorption, solubility, and color stability of gGiomer restoratives. J Esthet Restor Dent 2015;27(5):300-6.10.1111/jerd.1211925145876 Search in Google Scholar

53. Ikemura K, Tay FR, Endo T, Pashley DH. A review of chemical-approach and ultramorphological studies on the development of fluoride-releasing dental adhesives comprising new pre-reacted glass ionomer (PRG) fillers. Dent Mater J 2008;27(3):315-39.10.4012/dmj.27.31518717159 Search in Google Scholar

54. Ruivo MA, Pacheco RR, Sebold M, Giannini M. Surface roughness and filler particles characterization of resin-based composites. Microsc Res Tech 2019;82(10):1756-67.10.1002/jemt.2334231313442 Search in Google Scholar

55. PulpDent® Corporation. ActivaTM BioACTIVE. A closer look at BioACTIVE Materials. https://www.pulpdent.com/wp-content/uploads/2019/09/ACTIVA-White-Paper-XF-VWP6-REV-06-2017-3.pdf (13.04.2022). Search in Google Scholar

56. Scientific Documentation: Cention N. https://downloadcenter.ivoclar.com/#search-text=cention%20n&details=23015 (13.04.2022). Search in Google Scholar

57. McNaught AD, Wilkinson A, editors. IUPAC. Compendium of Chemical Terminology (the “Gold Book”). Oxford: Blackwell Scientific Publications;1997. Search in Google Scholar

58. Scientific Manual. Surefil oneTM. Self-Adhesive composite hybrid. https://assets.dentsplysirona.com/flagship/en/explore/restorative/surefil-one/RES-Scientific-Compendium-Surefil-one-EN.pdf (13.04.2022). Search in Google Scholar

59. Lohbauer U, Belli R. The mechanical performance of a novel self-adhesive restorative material. J Adhes Dent 2020;22(1):47-58. Search in Google Scholar

60. Garoushi S, Vallittu PK, Lassila L. Characterization of fluoride releasing restorative dental materials. Dent Mater J 2018;37(2):293-300.10.4012/dmj.2017-16129279547 Search in Google Scholar

61. May E, Donly KJ. Fluoride release and re-release from a bioactive restorative material. Am J Dent 2017;30(6):305-8. Search in Google Scholar

62. Kunert M, Lukomska-Szymanska M. Bio-inductive matrials in direct and indirect pulp capping – a review article. Materials (Basel) 2020;13(5):1204.10.3390/ma13051204708508532155997 Search in Google Scholar

63. Poreńczuk A, Jankiewicz B, Naurecka M, Bartosewicz B, Sierakowski B, Gozdowski D, et al. A comparison of the remineralizing potential of dental restorative materials by analyzing their fluoride release profiles. Adv Clin Exp Med 2019;28(6):815-23.10.17219/acem/9414030740943 Search in Google Scholar

64. Tiskaya M, Al-Eesa NA, Wong FSL, Hill RG. Characterization of the bioactivity of two commercial composites. Dent Mater 2019;35(12):1757-68.10.1016/j.dental.2019.10.00431699444 Search in Google Scholar

65. Paul S, Raina A, Kour S, Mishra S, Bansal M, Sengupta A. Comparative evaluation of fluoride release and re-release and recharge potential of Zirconomer Improved and Cention. J Conserv Dent 2020;23(4):402-6.10.4103/JCD.JCD_222_20788377733623244 Search in Google Scholar

66. Rai S, Kumari RA, Meena N. Comparative assessment of fluoride release and recharge through newer fluoride releasing posterior restorative materials: an in vitro study. J Conserv Dent 2019;22(6):544-7.10.4103/JCD.JCD_92_19754206833088062 Search in Google Scholar

67. van Dijken JWV, Pallesen U, Benetti A. A randomized controlled evaluation of posterior resin restorations of an altered resin modified glass-ionomer cement with claimed bioactivity. Dent Mater 2019;35(2):335-43.10.1016/j.dental.2018.11.02730527586 Search in Google Scholar

68. Bhadra D, Shah NC, Rao AS, Dedania MS, Bajpai N. A 1-year comparative evaluation of clinical performance of nanohybrid composite with ActivaTM bioactive composite in Class II carious lesion: A randomized control study. J Conserv Dent 2019;22(1):92-6. Search in Google Scholar

69. François P, Remadi A, Le Goff S, Abdel-Gawad S, Attal JP, Dursun E. Flex-ural properties and dentin adhesion in recently developed self-adhesive bulk-fill materials. J Oral Sci 2021;63(2):139-44.10.2334/josnusd.20-044833597335 Search in Google Scholar

70. Garcia-Godoy F, Morrow BR. Wear resistance of new ACTIVA compared to other restorative materials. J Dent Res 2015;94:3522. Search in Google Scholar

71. Chowdhury D, Guha C, Desai P. Comparative evaluation of fracture resistance of dental amalgam, Z350 composite resin and Cention N restoration in Class II cavity. IOSR J Dent Med Scien 2018;17(4):52-4. Search in Google Scholar

72. Dedania MS, Shah NC, Bhandra D, Bajpai N, Sapariya K. One year comparative evaluation of clinical performance of silver amalgam and Cention N in simple Class I carious lesions in permanent molars-a split mouth randomized control study. Int J Curr Res 2018:10(8):72993-6. Search in Google Scholar

73. Minocha A, Sharma V, Gupta A, Sharma N. Comparative evaluation of Cention N and Amalgam in Class II posterior restorations. Univ J Dent Sci 2021;7(1):58-61.10.21276/10.21276/ujds.2021.7.1.11 Search in Google Scholar

74. Kaur M, Mann NS, Jhamb A, Batra D. A comparative evaluation of compressive strength of Cention N with glass Ionomer cement: an in vitro study. Int J Appl Dent Sci 2019;5(1):5-9. Search in Google Scholar

75. Iftikhar N, Devashish, Srivastava B, Gupta N, Ghambir N, Rashi-Singh. A comparative evaluation of mechanical properties of four different restorative materials: an in vitro study. Int J Clin Pediatr Dent 2019;12(1):47-910.5005/jp-journals-10005-1592671094931496572 Search in Google Scholar

76. Pathak AK, Mallikarjuna K. An in vitro comparative evaluation of compressive strength, diametral tensile strength, and shear bond strength of type II glass ionomer cement, type IX glass ionomer cement, and Cention N on primary molars. J Interdiscip Dentistry 2021;11(2):57-61.10.4103/jid.jid_3_21 Search in Google Scholar

77. Biswas I, Shil R, Mazumdar P, Desai P. Comparative evaluation of fracture resistance of dental amalgam, Dyract-XP composite resin and Cention-N restoration in class I cavity. Int J Innovat Res Dent Sci 2018;3(2):384-92. Search in Google Scholar

78. Frankenberger R, Dudek MC, Winter J, Braun A, Krämer N, von Stein-Lausnitz M, et al. Amalgam alternatives critically evaluated: effect of long-term termomechanical loading on marginal quality, wear and fracture behavior. J Adhes Dent 2020;22(1):107-16. Search in Google Scholar

79. Sahoo SK, Meshram GR, Parihar AS, Pitalia D, Vasudevan H, Surana A. Evaluation of effect of dietary solvents on bond strength of compomer, ormocer, nanocomposite and Activa Bioactive Restorative Materials. J Int Soc Prev Community Dent 2019;9(5):453-7. Search in Google Scholar

80. Latta MA, Tsujimoto A, Takamizawa T, Barkmeier WW. In vitro wear resistance of self-adhesive restorative materials. J Adhes Dent 2020;22(1):59-64. Search in Google Scholar

eISSN:
2719-6313
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Basic Medical Science, other, Clinical Medicine, Surgery, Public Health