Open Access

Pathogenesis of abdominal aortic aneurysm – the role of inflammation and proteolysis


Cite

1. Kumar Y, Hooda K, Li S, Goyal P, Gupta N, Adeb M. Abdominal aortic aneurysm: pictorial review of common appearances and complications. Ann Transl Med 2017;5(12):256.10.21037/atm.2017.04.32549708128706924 Search in Google Scholar

2. Wanhainen A, Verzini F, Van Herzeele I, Allaire E, Bown M, Cohnert T, et al. Editor’s Choice – European Society for Vascular Surgery (ESVS) 2019 Clinical Practice Guidelines on the Management of Abdominal Aorto-iliac Artery Aneurysms. Eur J Vasc Endovasc Surg 2019;57(1):8-93.10.1016/j.ejvs.2018.09.02030528142 Search in Google Scholar

3. Mussa FF. Screening for abdominal aortic aneurysm. J Vasc Surg 2015;62(3):774-8.10.1016/j.jvs.2015.05.03526169012 Search in Google Scholar

4. Michel JB, Martin-Ventura JL, Egido J, Sakalihasan N, Treska V, Lindholt J, et al. Novel aspects of the pathogenesis of aneurysms of the abdominal aorta in humans. Cardiovasc Res 2011;90(1):18-27.10.1093/cvr/cvq337305872821037321 Search in Google Scholar

5. Bhagavan D, Di Achille P, Humphrey JD. Strongly coupled morphological features of aortic aneurysms drive intraluminal thrombus. Sci Rep 2018;8(1):13273.10.1038/s41598-018-31637-6612540430185838 Search in Google Scholar

6. Piechota-Polanczyk A, Jozkowicz A, Nowak W, Eilenberg W, Neumayer C, Malinski T, et al. The abdominal aortic aneurysm and intraluminal thrombus: current concepts of development and treatment. Front Cardiovasc Med 2015;2:19.10.3389/fcvm.2015.00019467135826664891 Search in Google Scholar

7. Ullery BW, Hallett RL, Fleischmann D. Epidemiology and contemporary management of abdominal aortic aneurysms. Abdom Radiol 2018;43(5):1032-43.10.1007/s00261-017-1450-729313113 Search in Google Scholar

8. Kim HO, Yim NY, Kim JK, Kang YJ, Lee BC. Endovascular aneurysm repair for abdominal aortic aneurysm: a comprehensive review. Korean J Radiol 2019;20(8):1247-65.10.3348/kjr.2018.0927665887731339013 Search in Google Scholar

9. Komutrattananont P, Mahakkanukrauh P, Das S. Morphology of the human aorta and age-related changes: anatomical facts. Anat Cell Biol 2019;52(2):109-14.10.5115/acb.2019.52.2.109662434231338225 Search in Google Scholar

10. Kuivaniemi H, Ryer EJ, Elmore JR, Tromp G. Understanding the pathogenesis of abdominal aortic aneurysms. Expert Rev Cardiovasc Ther 2015;13(9):975-87.10.1586/14779072.2015.1074861482957626308600 Search in Google Scholar

11. Leung J, Wright A, Cheshire N, Thom SA, Hughes AD, Xu XY. Flow patterns and wall shear stresses in patient-specific models of the abdominal aortic aneurysm. Stud Health Technol Inform 2004;103:235-42. Search in Google Scholar

12. Tamura T, Jamous MA, Kitazato KT, Yagi K, Tada Y, Uno M, et al. Endothelial damage due to impaired nitric oxide bioavailability triggers cerebral aneurysm formation in female rats. J Hypertens 2009;27(6):1284-92.10.1097/HJH.0b013e328329d1a7 Search in Google Scholar

13. Martinez-Pinna R, Madrigal-Matute J, Tarin C, Burillo E, Esteban-Salan M, Pastor-Vargas C, et al. Proteomic analysis of intraluminal thrombus highlights complement activation in human abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 2013;33(8):2013-20.10.1161/ATVBAHA.112.301191 Search in Google Scholar

14. Shimizu K, Mitchell RN, Libby P. Inflammation and cellular immune responses in abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 2006;26(5):987-94.10.1161/01.ATV.0000214999.12921.4f Search in Google Scholar

15. Anzai T. Inflammatory Mechanisms of Cardiovascular Remodeling. Circ J 2018;82(3):629-35.10.1253/circj.CJ-18-0063 Search in Google Scholar

16. Adolph R, Vorp DA, Steed DL, Webster MW, Kameneva MV, Watkins SC. Cellular content and permeability of intraluminal thrombus in abdominal aortic aneurysm. J Vasc Surg 1997;25(5):916-26.10.1016/S0741-5214(97)70223-4 Search in Google Scholar

17. Eliason JL, Hannawa KK, Ailawadi G, Sinha I, Ford JW, Deogracias MP, et al. Neutrophil depletion inhibits experimental abdominal aortic aneurysm formation. Circulation 2005;112(2):232-40.10.1161/CIRCULATIONAHA.104.51739116009808 Search in Google Scholar

18. Kadoglou NP, Liapis CD. Matrix metalloproteinases: contribution to pathogenesis, diagnosis, surveillance and treatment of abdominal aortic aneurysms. Curr Med Res Opin 2004;20(4):419-32.10.1185/03007990412500314315119978 Search in Google Scholar

19. Samadzadeh KM, Chun KC, Nguyen AT, Baker PM, Bains S, Lee ES. Monocyte activity is linked with abdominal aortic aneurysm diameter. J Surg Res 2014;190(1):328-34.10.1016/j.jss.2014.03.01924726061 Search in Google Scholar

20. Cione E, Piegari E, Gallelli G, Caroleo MC, Lamirata E, Curcio F, et al. Expression of MMP-2, MMP-9, and NGAL in tissue and serum of patients with vascular aneurysms and their modulation by statin treatment: a pilot study. Biomolecules 2020;10(3):359.10.3390/biom10030359717521332111073 Search in Google Scholar

21. Reeps C, Pelisek J, Seidl S, Schuster T, Zimmermann A, Kuehnl A, et al. Inflammatory infiltrates and neovessels are relevant sources of MMPs in abdominal aortic aneurysm wall. Pathobiology 2009;76(5):243-52.10.1159/00022890019816084 Search in Google Scholar

22. Łukasiewicz A, Reszec J, Kowalewski R, Chyczewski L, Łebkowska U. Assessment of inflamatory infiltration and angiogenesis in the thrombus and the wall of abdominal aortic aneurysms on the basis of histological parameters and computed tomography angiography study. Folia Histochem Cytobiol 2012;50(4):547-53.10.5603/FHC.2012.0077 Search in Google Scholar

23. Sawada H, Hao H, Naito Y, Oboshi M, Hirotani S, Mitsuno M, et al. Aortic iron overload with oxidative stress and inflammation in human and murine abdominal aortic. Arterioscler Thromb Vasc Biol 2015;35(6):1507-14.10.1161/ATVBAHA.115.305586 Search in Google Scholar

24. Delbosc S, Diallo D, Dejouvencel T, Lamiral Z, Louedec L, Martin-Ventura JL, et al. Impaired high-density lipoprotein anti-oxidant capacity in human abdominal aortic aneurysm. Cardiovasc Res 2013;100(2):307-15.10.1093/cvr/cvt194 Search in Google Scholar

25. Tilson MD. Autoimmunity in the abdominal aortic aneurysm and its association with smoking. Aorta (Stamford) 2017;5(6):159-67.10.12945/j.aorta.17.693 Search in Google Scholar

26. Blanchard JF, Armenian HK, Peeling R, Friesen PP, Shen C, Brunham RC. The relation between Chlamydia pneumoniae infection and abdominal aortic aneurysm: case-control study. Clin Infect Dis 2000;30(6):946-7.10.1086/313806 Search in Google Scholar

27. Ocana E, Bohórquez JC, Pérez-Requena J, Brieva JA, Rodríguez C. Char-acterisation of T and B lymphocytes infiltrating abdominal aortic aneurysms. Atherosclerosis 2003;170(1):39-48.10.1016/S0021-9150(03)00282-X Search in Google Scholar

28. Joviliano EE, Ribeiro MS, Tenorio EJR. MicroRNAs and current concepts on the pathogenesis of abdominal aortic aneurysm. Braz J Cardiovasc Surg 2017;32(3):215-24.10.21470/1678-9741-2016-0050 Search in Google Scholar

29. Raphael I, Nalawade S, Eagar TN, Forsthuber TG. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine 2015;74(1):5-17.10.1016/j.cyto.2014.09.011 Search in Google Scholar

30. Fietta P, Delsante G. The effector T helper cell triade. Riv Biol 2009;102(1):61-74. Search in Google Scholar

31. Xiong W, Zhao Y, Prall A, Greiner TC, Baxter BT. Key roles of CD4+ T cells and IFN-gamma in the development of abdominal aortic aneurysms in a murine model. J Immunol 2004;172(4):2607-12.10.4049/jimmunol.172.4.2607 Search in Google Scholar

32. Schönbeck U, Sukhova GK, Gerdes N, Libby P. T(H)2 predominant immune responses prevail in human abdominal aortic aneurysm. Am J Pathol 2002;161(2):499-506.10.1016/S0002-9440(10)64206-X Search in Google Scholar

33. Cassimjee I, Regent L, Jyoti P. Inflammatory mediators in abdominal aortic aneurysms. Aortic aneurysm. In: Kirali K, editor. Aortic Aneurysm. Intech Open; 2017. p. 79-90.10.5772/65961 Search in Google Scholar

34. Raffort J, Lareyre F, Clément M, Hassen-Khodja R, Chinetti G, Mallat Z. Monocytes and macrophages in abdominal aortic aneurysm. Nat Rev Cardiol 2017;14(8):457-71.10.1038/nrcardio.2017.5228406184 Search in Google Scholar

35. Davies LC, Jenkins SJ, Allen JE, Taylor PR. Tissue-resident macrophages. Nat Immunol 2013;14(10):986-95.10.1038/ni.2705404518024048120 Search in Google Scholar

36. Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 2014;41(1):14-20.10.1016/j.immuni.2014.06.008412341225035950 Search in Google Scholar

37. Vucevic D, Maravic-Stojkovic V, Vasilijic S, Borovic-Labudovic M, Majstorovic I, Radak D, et al. Inverse production of IL-6 and IL-10 by abdominal aortic aneurysm explant tissues in culture. Cardiovasc Pathol 2012;21(6):482-9.10.1016/j.carpath.2012.02.00622445549 Search in Google Scholar

38. Dale MA, Xiong W, Carson JS, Suh MK, Karpisek AD, Meisinger TM, et al. Elastin-derived peptides promote abdominal aortic aneurysm formation by modulating M1/M2 macrophage polarization. J Immunol 2016;196(11):4536-43.10.4049/jimmunol.1502454488045527183603 Search in Google Scholar

39. Ghigliotti G, Barisione C, Garibaldi S, Brunelli C, Palmieri D, Spinella G, et al. CD16(+) monocyte subsets are increased in large abdominal aortic aneurysms and are differentially related with circulating and cell-associated biochemical and inflammatory biomarkers. Dis Markers 2013;34(2):131-42.10.1155/2013/836849380974823348634 Search in Google Scholar

40. Kim HW, Blomkalns AL, Ogbi M, Thomas M, Gavrila D, Neltner BS, et al. Role of myeloperoxidase in abdominal aortic aneurysm formation: mitigation by taurine. Am J Physiol Heart Circ Physiol 2017;313(6):H1168-79.10.1152/ajpheart.00296.2017581465528971841 Search in Google Scholar

41. Ramos-Mozo P, Madrigal-Matute J, Martinez-Pinna R, Blanco-Colio LM, Lopez JA, Camafeita E, et al. Proteomic analysis of polymorphonuclear neutrophils identiies catalase as a novel biomarker of abdominal aortic aneurysm: potential implication of oxidative stress in abdominal aortic aneurysm progression. Arterioscler Thromb Vasc Biol 2011;31(12):3011-9.10.1161/ATVBAHA.111.23753721940941 Search in Google Scholar

42. Ramos-Mozo P, Madrigal-Matute J, Vega de Ceniga M, Blanco-Colio LM, Meilhac O, Feldman L, et al. Increased plasma levels of NGAL, a marker of neutrophil activation, in patients with abdominal aortic aneurysm. Atherosclerosis 2012;220(2):552-6.10.1016/j.atherosclerosis.2011.11.02322169111 Search in Google Scholar

43. Teng N, Maghzal GJ, Talib J, Rashid I, Lau AK, Stocker R. The roles of myeloperoxidase in coronary artery disease and its potential implication in plaque rupture. Redox Rep 2017;22(2):51-73.10.1080/13510002.2016.1256119683745827884085 Search in Google Scholar

44. Lopez-Castejon G, Brough D. Understanding the mechanism of IL-1β secretion. Cytokine Growth Factor Rev 2011;22(4):189-95.10.1016/j.cytogfr.2011.10.001371459322019906 Search in Google Scholar

45. Peshkova IO, Schaefer G, Koltsova EK. Atherosclerosis and aortic aneurysm – is inflammation a common denominator? FEBS J 2016;283(9):1636-52. Search in Google Scholar

46. Aria H, Kalani M, Hodjati H, Doroudchi M. Elevated levels of IL-6 and IL-9 in the sera of patients with AAA do not correspond to their production by peripheral blood mononuclear cells. Artery Res 2018;21(C):43-52.10.1016/j.artres.2017.12.007 Search in Google Scholar

47. Harrison SC, Smith AJP, Jones GT, Swerdlow DI, Rampuri R, Bown MJ, et al. Interleukin-6 receptor pathways in abdominal aortic aneurysm. Eur Heart J 2013;34(48):3707-16.10.1093/eurheartj/ehs354386996823111417 Search in Google Scholar

48. Kokje VBC, Gäbel G, Koole D, Northoff BH, Holdt LM, Hamming JF, et al. IL-6: a Janus-like factor in abdominal aortic aneurysm disease. Atherosclerosis 2016;251:139-46.10.1016/j.atherosclerosis.2016.06.02127318834 Search in Google Scholar

49. Lindberg S, Zarrouk M, Holst J, Gottsäter A. Inflammatory markers associated with abdominal aortic aneurysm. Eur Cytokine Netw 2016;27(3):75-80.10.1684/ecn.2016.038127910812 Search in Google Scholar

50. Wang Q, Ren J, Morgan S, Liu Z, Dou C, Liu B. Monocyte chemoattractant protein-1 (MCP-1) regulates macrophage cytotoxicity in abdominal aortic aneurysm. PloS One 2014;9(3):e92053.10.1371/journal.pone.0092053395491124632850 Search in Google Scholar

51. Apostolakis S, Vogiatzi K, Amanatidou V, Spandidos DA. Interleukin 8 and cardiovascular disease. Cardiovasc Res 2009;84(3):353-60.10.1093/cvr/cvp24119617600 Search in Google Scholar

52. Karwowska A, Kurianiuk A, Łapiński R, Gacko M, Karczewski J. Epidemiology of abdominal aortic aneurysm. Prog Health Sci 2015;5(1):238-45. Search in Google Scholar

53. Kokje VBC, Gäbel G, Dalman RL, Koole D, Northoff BH, Holdt LM, et al. CXCL8 hyper-signaling in the aortic abdominal aneurysm. Cytokine 2018;108:96-104.10.1016/j.cyto.2018.03.03129587155 Search in Google Scholar

54. Ohno T, Aoki H, Ohno S, Nishihara M, Furusho A, Hiromatsu S, et al. Cytokine profile of human abdominal aortic aneurysm: involvement of JAK/STAT pathway. Ann Vasc Dis 2018;11(1):84-90.10.3400/avd.oa.17-00086588234929682112 Search in Google Scholar

55. Sano M, Sasaki T, Hirakawa S, Sakabe J, Ogawa M, Baba S, et al. Lymphangiogenesis and Angiogenesis in Abdominal Aortic Aneurysm. PLoS One 2014;9(3):e89830.10.1371/journal.pone.0089830396125024651519 Search in Google Scholar

56. Hamano K, Li TS, Takahashi M, Kobayashi T, Shirasawa B, Ito H, et al. Enhanced tumor necrosis factor-alpha expression in small sized abdominal aortic aneurysm. World J Surg 2003;27(4):476-80.10.1007/s00268-002-6690-012658496 Search in Google Scholar

57. Xiong W, MacTaggart J, Knispel R, Worth J, Persidsky Y, Baxter BT. Blocking TNF-alpha attenuates aneurysm formation in a murine model. J Immunol 2009;183(4):2741-6.10.4049/jimmunol.0803164402811419620291 Search in Google Scholar

58. Sheth RA, Maricevich M, Mahmood U. In vivo optical molecular imaging of matrix metalloproteinase activity in abdominal aortic aneurysms correlates with treatment effects on growth rate. Atherosclerosis 2010;212(1):181-7.10.1016/j.atherosclerosis.2010.05.012293333020542274 Search in Google Scholar

59. Sangiorgi G, D’Averio R, Mauriello A, Bondio M, Pontillo M, Castelvecchio S, et al. Plasma levels of metalloproteinases-3 and -9 as markers of successful abdominal aortic aneurysm exclusion after endovascular graft treatment. Circulation 2001;104:288-95.10.1161/hc37t1.09459611568071 Search in Google Scholar

60. Loria V, Dato I, Graziani F, Biasucci LM. Myeloperoxidase: a new biomarker of inflammation in ischemic heart disease and acute coronary syndromes. Mediators Inflamm 2008;2008:135625.10.1155/2008/135625227659418382609 Search in Google Scholar

61. Serra R, Grande R, Montemurro R, Butrico L, Caliò FG, Mastrangelo D, et al. The role of matrix metalloproteinases and neutrophil gelatinase-associated lipocalin in central and peripheral arterial aneurysms. Surgery 2015;157(1):155-62.10.1016/j.surg.2014.06.00825444221 Search in Google Scholar

eISSN:
2719-6313
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Basic Medical Science, other, Clinical Medicine, Surgery, Public Health