Cite

1. Kurzyk A. Angiogeneza – możliwości, problemy, perspektywy. Post Bioch 2015;61(1):25-34.Search in Google Scholar

2. Banyś A, Bułaś L, Długosz E, Szulc-Musiał B, Jankowski A. Angiogeneza w chorobie nowotworowej. Patofizjologia 2009;65(4):247-50.Search in Google Scholar

3. Tomczyk M, Nowak W, Jaźwa A. Śródbłonek w fizjologii i patogenezie chorób. Post Bioch 2013;59(4):357-64.Search in Google Scholar

4. Szala S, Jarosz M. Nowotworowe naczynia krwionośne. Post Hig 2011;65:437-46.10.5604/17322693.951193Search in Google Scholar

5. Sacewicz I, Wiktorska M, Wysocki T, Niewarowska J. Mechanizmy angiogenezy nowotworowej. Post Hig 2009;63:159-68.Search in Google Scholar

6. Szala S. Angiogeneza i immunosupresja: jin i jang progresji nowotworów? Post Hig 2009;63:598-612.Search in Google Scholar

7. Suarez Y, Sessa WC. MicroRNAs as novel regulators of angiogenesis. Circ Res 2009;104(4):442-54.10.1161/CIRCRESAHA.108.191270Search in Google Scholar

8. Filip A. MikroRNA: nowe mechanizmy regulacji ekspresji genów. Post Bioch 2007;53(4):413-9.Search in Google Scholar

9. Du T, Zamore PD. microPrimer: the biogenesis and function of microRNA. Development 2005;132(21):4645-52.10.1242/dev.02070Search in Google Scholar

10. Pillai RS. MicroRNA function: Multiple mechanisms for a tiny RNA? RNA 2005;11(12):1753-61.Search in Google Scholar

11. Grenda A, Budzyński M, Filip AA. Biogeneza cząsteczek mikroRNA oraz ich znaczenie w powstawaniu i przebiegu wybranych zaburzeń hematologicznych. Post Hig 2013;67:174-85.10.5604/17322693.1038361Search in Google Scholar

12. Król J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 2010;11(9):597-610.10.1038/nrg2843Search in Google Scholar

13. Bujak J, Kopytko P, Lubecka M. miRNA markerami chorób nowotworowych. Nauka, Badania i Doniesienia Naukowe 2017;1:269-77.Search in Google Scholar

14. Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 2005;6(5):376-85.10.1038/nrm1644Search in Google Scholar

15. Hukowska-Szematowicz B, Deptuła W. Biologiczna rola mikroRNA (miRNA) – nowe dane. Post Biol Komórki 2010;37(3):585-97.Search in Google Scholar

16. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS. Human micro-RNA targets. PLoS Biol 2004;2(11):e363.10.1371/journal.pbio.0020363Search in Google Scholar

17. Zeng Y, Wagner EJ, Cullen BR. Both natural and designed microRNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell 2002;9(6):1327-33.10.1016/S1097-2765(02)00541-5Search in Google Scholar

18. Zhuang G, Wu X, Jiang Z, Kasman I, Yao J, Guan Y, et al. Tumour-secreted miR-9 promotes endothelial cell migration and angiogenesis by activating the JAK-STAT pathway. EMBO J 2012;31(17):3513-23.10.1038/emboj.2012.183343378222773185Search in Google Scholar

19. Wang YL, Gong WG, Yuan QL. Effects of miR-27a upregulation on thyroid cancer cells migration, invasion, and angiogenesis. Genet Mol Res 2016;15(4):1-10. doi:10.4238/gmr15049070.10.4238/gmr1504907028002594Search in Google Scholar

20. Lin ZY, Chen G, Zhang YQ, He HC, Liang YX, Ye JH, et al. MicroRNA-30d promotes angiogenesis and tumor growth via MYPT1/c-JUN/VEGFA pathway and predicts aggressive outcome in prostate cancer. Mol Cancer 2017;16(1):48. doi:10.1186/s12943-017-0615-x.10.1186/s12943-017-0615-x532751028241827Search in Google Scholar

21. Colangelo T, Fucci A, Votino C, Sabatiano L, Pancione M, Laudanna C, et al. MicroRNA-130b promotes tumor development and is associated with poor prognosis in colorectal cancer. Neoplasia 2013;15(9):1086-99.10.1593/neo.13998376988724027433Search in Google Scholar

22. Li L, Li B, Chen D, Liu L, Huang C, Lu Z, et al. miR-139 and miR-200c regulate pancreatic cancer endothelial cell migration and angiogenesis. Oncol Rep 2015;34(1):51-8.10.3892/or.2015.394525955258Search in Google Scholar

23. Luo HN, Wang ZH, Sheng Y, Zhang Q, Yan J, Hou J, et al. miR-139 targets CXCR4 and inhibits the proliferation and metastasis of laryngeal squamous carcinoma cells. Med Oncol 2014;31(1):789. doi:10.1007/s12032-013-0789-z.10.1007/s12032-013-0789-z24318902Search in Google Scholar

24. Chuang TD, Panda H, Luo X, Chegini N. miR-200c is aberrantly expressed in leiomyomas in an ethnic-dependent manner and targets ZEBs, VEGFA, TIMP2, and FBLN5. Endocr Relat Cancer 2012;19(4):541-56.10.1530/ERC-12-0007340218422685266Search in Google Scholar

25. Zhu K, Pan Q, Zhang X, Kong LQ, Fan J, Dai Z, et al. MiR-146a enhances angiogenic activity of endothelial cells in hepatocellular carcinoma by promoting PDGFRA expression. Carcinogenesis 2013;34(9):2071-9.10.1093/carcin/bgt16023671131Search in Google Scholar

26. Bolat F, Kayaselcuk F, Nursal TZ, Yagmurdur MC, Bal N, Demirhan B. Microvessel density, VEGF expression, and tumor-associated macrophages in breast tumors: correlations with prognostic parameters. J Exp Clin Cancer Res 2006;25(3):365-72.Search in Google Scholar

27. Liu Y, Zhao L, Li D, Yin Y, Zhang CY, Li J, et al. Microvesicle-delivery miR-150 promotes tumorigenesis by up-regulating VEGF, and the neutralization of miR-150 attenuate tumor development. Protein Cell 2013;4(12):932-41.10.1007/s13238-013-3092-z487540224203759Search in Google Scholar

28. Markowska A, Jaszczyńska-Nowinka K, Kaysiewicz J, Makówka A, Markowska J. Angiogeneza w złośliwych nowotworach ginekologicznych. Curr Gynecol Oncol 2015,13(4):256-62.10.15557/CGO.2015.0028Search in Google Scholar

29. Baczyńska D, Michałowska D, Witkiewicz W. Rola mikroRNA w chorobach niedokrwiennych – wpływ na regulację procesów zapalnych, apoptozy i angiogenezy. Prz Lek 2014;70(3):135-42.Search in Google Scholar

30. Matsui J, Wakabayashi T, Asada M, Yoshimatsu K, Okada M. Stem cell factor/c-kit signaling promotes the survival, migration, and capillary tube formation of human umbilical vein endothelial cells. J Biol Chem 2004;279(18):18600-7.10.1074/jbc.M31164320014985355Search in Google Scholar

31. Poliseno L, Tuccoli A, Mariani L, Evangelista M, Citti L, Woods K, et al. MicroRNAs modulate the angiogenic properties of HUVECs. Blood 2006;108(9):3068-71.10.1182/blood-2006-01-01236916849646Search in Google Scholar

32. Suárez Y, Fernández-Hernando C, Pober JS, Sessa WC. Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ Res 2007;100(8):1164-73.10.1161/01.RES.0000265065.26744.1717379831Search in Google Scholar

33. Yamakuchi M, Yagi S, Ito T, Lowenstein CJ. MicroRNA-22 regulates hypoxia signaling in colon cancer cells. PLoS One 2011;6(5):e20291.10.1371/journal.pone.0020291310032621629773Search in Google Scholar

34. Hua Z, Lv Q, Ye W, Wong CK, Cai G, Gu D, et al. MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS One 2006;1: e116.10.1371/journal.pone.0000116176243517205120Search in Google Scholar

35. Umezu T, Imanishi S, Azuma K, Kobayashi C, Yoshizawa S, Ohyashiki K, et al. Replenishing exosomes from older bone marrow stromal cells with miR-340 inhibits myeloma-related angiogenesis. Blood Adv 2017;1(13):812-23.10.1182/bloodadvances.2016003251572780529296725Search in Google Scholar

36. Xu Q, Liu LZ, Qian X, Chen Q, Jiang Y, Li D, et al. MiR-145 directly targets p70S6K1 in cancer cells to inhibit tumor growth and angiogenesis. Nucleic Acids Res 2012;40(2):761-74.10.1093/nar/gkr730325813321917858Search in Google Scholar

37. Cha ST, Chen PS, Johansson G, Chu CY, Wang MY, Jeng YM, et al. MicroRNA-519c suppresses hypoxia-inducible factor-1alpha expression and tumor angiogenesis. Cancer Res 2010;70(7):2675-85.10.1158/0008-5472.CAN-09-244820233879Search in Google Scholar

eISSN:
2719-6313
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Basic Medical Science, other, Clinical Medicine, Surgery, Public Health