Open Access

Computing topological indices of the line graphs of Banana tree graph and Firecracker graph


Cite

Introduction and Preliminaries

Let G be a simple graph with vertex set V(G) and edge set E(G). We denote p = |V(G)| and q = |E(G)|, order and size of graph G respectively. The degree dν of a vertex ν in graph G is defined as the number of first neighbors of vertex ν in G. The concept of degree in graph theory is closely related to the concept of valence in chemistry. The complement of a graph G, represented through G¯$\begin{array}{} \displaystyle \overline{G} \end{array}$, is a simple graph on the similar set of vertices V(G) wherein two vertices u and ν are joined by an edge , if and only if they are not adjacent in G. Obviously, E(G)E(G¯)=E(Kp)$\begin{array}{} \displaystyle E(G) \cup E(\overline{G})= E(K_{p}) \end{array}$ where Kp is complete graph of order p, |E(G¯)|=p(p1)2q$\begin{array}{} \displaystyle |E(\overline{G})| = \frac{p(p-1)}{2} -q \end{array}$. In the mathematically discipline of graph theory, the line graph of an undirected graph G is alternative graph L(G) that denotes the adjacencies among the edges of G. Line graphs are very useful in mathematical chemistry, but in recent years they were considered very little in chemical graph theory. For further facts about the applications of line graphs in chemistry, we mention the articles [6, 25, 32].

Topological indices are the arithmetical numbers which depends upon the construction of any simple graph. Topological indices are generally classified into three kinds: degree-based indices (see [2, 5, 7, 8, 28, 29]), distance-based indices (see [3, 16]), and spectrum-based indices (see [11, 27]). There are also certain topological indices depends upon both degrees and distances (see [9, 27]). The advantage of topological indices is in that they may be used directly as simple numerical descriptors in a comparison with, chemical, physical or biological parameters of molecules in Quantitative Structure Property Relationships (QSPR) and in Quantitative Structure Activity Relationships (QSAR). Wiener index is the oldest topological index and its mathematical properties and chemical applications have been extensively studied.

The Wiener index of graph G is defined as follows:

W(G) =12(u,v)d(u,v).$$\begin{array}{} \displaystyle W(G) &=& \frac{1}{2} \sum \limits_{(u,v)} d(u,v). \end{array}$$

where (u, ν) is any ordered pair of vertices in G and d(u, ν) is uν geodesic.

The Zagreb indices were first introduced by Gutman in [24], they are important molecular descriptors and have been closely correlated with many chemical properties (see [35]) and defined as:

M1(G)=uV(G)du2and$$\begin{array}{} \displaystyle {{M_1}(G) = \mathop \sum \limits_{u \in V(G)} d_u^2}~~{{\rm{and}}} \end{array}$$

M2(G) =uvE(G)dudv.$$\begin{array}{} \displaystyle M_2(G) &=& \sum\limits_{uv \in E(G)} d_{u}d_{v}.\label{Z2} \end{array}$$

In fact, one can rewrite the first Zagreb index as

M1(G) =uvE(G)[du+dv].$$\begin{array}{} \displaystyle M_1(G) &=& \sum\limits_{uv \in E(G)} \big[ d_u +d_v \big]. \end{array}$$

The third Zagreb index, introduced by Fath-Tabar in [13]. This index is defined as follows:

M3(G) =uvE(G)|dudv|.$$\begin{array}{} \displaystyle M_3(G) &=& \sum\limits_{uv \in E(G)} |d_u- d_v|. \end{array}$$

The hyper-Zagreb index was first introduced in [34]. This index is defined as follows:

HM(G) =uvE(G)(du+dv)2.$$\begin{array}{} \displaystyle HM(G) &=& \sum\limits_{uv \in E(G)} (d_u+d_v)^{2}. \end{array}$$

In 2008, Doslic put forward the first Zagreb coindex, defined as (see [1]):

M1¯=M1¯(G)uvE(G)[du+dv].$$\begin{array}{} \displaystyle \overline{M_1}=\overline{M_{1}}(G) = \sum\limits_{uv \not\in E(G)} \big[ d_u +d_v \big]. \end{array}$$

The second Zagreb coindex is defined as (see [1]):

M2¯=M2¯(G) =uvE(G)dudv.$$\begin{array}{} \displaystyle \overline{M_2}= \overline{M_{2}}(G) &=& \sum\limits_{uv \not\in E(G)} d_{u}d_{v}. \end{array}$$

The degree distance index for graphs developed by Dobrynin and Kochetova in [10] and Gutman in [17] as

a weighted version of the Wiener index. The degree distance of G, denoted by DD(G), is defined as follows:

DD(G) ={u,v}V(G)d(u,v)[du+dv].$$\begin{array}{} \displaystyle DD\left( G \right) = \sum\limits_{\{ u,v\} \subseteq V\left( G \right)} {d\left( {u,v} \right)} [{d_u} + {d_v}]. \end{array}$$

Randić index introduced by Milan Randić in 1975 (see [30]). This index is defined as follows:

R(G)=uvE(G)1dudv.$$\begin{array}{} \displaystyle R(G)=\sum\limits_{uv \in E(G)} \frac{1}{\sqrt{d_ud_v}}. \end{array}$$

Later, this index was generalized by Bollobás and Erdös (see [4]) to the following form for any real number α, and named the general Randić index:

R(G)=uvE(G)[dudv]α.$$\begin{array}{} \displaystyle R(G)=\sum\limits_{uv \in E(G)} [{d_ud_v}]^\alpha . \end{array}$$

The Atom-Bond Connectivity index (ABC), introduced by Estrda et al. in [12] which has been applied up until now to study the stability of alkanes and the strain energy of cycloalkanes. The ABC index of G is defined as:

ABC(G)=uvE(G)du+dv2dudv.$$\begin{array}{} \displaystyle ABC(G)=\sum\limits_{uv \in E(G)} \sqrt{\frac{d_u+d_v-2}{d_ud_v}}. \end{array}$$

In 2010, the general sum-connectivity index χ(G) has been introduced in [37]. This index is defined as follows:

χ(G)=uvE(G)1du+dv.$$\begin{array}{} \displaystyle \chi(G)=\sum\limits_{uv \in E(G)} \frac{1}{\sqrt{d_u+d_v}}. \end{array}$$

D. Vukicevic and B. Furtula introduced the geometric arithmetic (GA) index in [36]. The GA index for G is defined by

GA(G)=uvE(G)2dudvdu+dv.$$\begin{array}{} \displaystyle GA(G)=\sum\limits_{uv \in E(G)} \frac{2\sqrt{d_ud_v}}{d_u+d_v}. \end{array}$$

Inspired by the work on the ABC index, Furtula et al. proposed the following modified version of the ABC index and called it as Zagreb index (AZI) in [14]. This index is defined as follows:

AZI(G)=uvE(G)(dudvdu+dv2)3.$$\begin{array}{} \displaystyle AZI(G)=\sum\limits_{uv \in E(G)} (\frac{d_ud_v}{d_u+d_v-2})^3. \end{array}$$

The fourth member of the class of ABC index was introduced by M. Ghorbani et al. in [20, 22, 23] as:

ABC4(G)=uvE(G)Su+Sv2SuSv.$$\begin{array}{} \displaystyle ABC_4(G)=\sum\limits_{uv \in E(G)} \sqrt{\frac{S_u+S_v-2}{S_uS_v}}. \end{array}$$

where Su is the summation of degrees of all neighbors of vertex u in G. In other words, Su = Σuν∈E(G)dν. Similarly for Sν.

The 5th GA index was introduced by Graovac et al. in [21] as:

GA5(G)=uvE(G)2SuSvSu+Sv.$$\begin{array}{} \displaystyle GA_5(G)=\sum\limits_{uv \in E(G)} \frac{2\sqrt{S_uS_v}}{S_u+S_v}. \end{array}$$

The Sanskruti index S(G) of a graph G is defined in [33] as follows:

S(G)=uvE(G)(SuSvSu+Sv2)3.$$\begin{array}{} \displaystyle S(G)=\sum\limits_{uv \in E(G)} (\frac{S_uS_v}{S_u+S_v-2})^3. \end{array}$$

Theorem 1

[17] Let G be a graph of order p and size q. Then

M1(G¯) =M1(G)+p(p1)24q(p1);$$\begin{array}{} \displaystyle M_{1}(\overline{G}) &=& M_{1}(G)+ p(p-1)^{2}- 4q(p-1);\\ \end{array}$$

M1¯(G) =2q(p1)M1(G);$$\begin{array}{} \displaystyle \overline{M_{1}}(G) &=& 2q(p-1)- M_{1}(G); \\ \end{array}$$

M1¯(G¯) =2q(p1)M1(G).$$\begin{array}{} \displaystyle \overline{M_{1}}(\overline{G}) &=& 2q(p-1)- M_{1}(G). \end{array}$$

Theorem 2

[19] Let G be a graph of order p and size q. Then

M2(G¯) =12p(p1)33q(p1)2+2q2+2p32M1(G)M2(G);$$\begin{array}{} \displaystyle M_{2}(\overline{G}) &=& \frac{1}{2}p(p-1)^{3}- 3q(p-1)^{2} + 2q^{2} +\frac{2p-3}{2}M_{1}(G) -M_{2}(G);\\ \end{array}$$

M2¯(G) =2q212M1(G)M2(G);$$\begin{array}{} \displaystyle \overline{M_{2}}(G) &=& 2q^{2}-\frac{1}{2} M_{1}(G) - M_{2}(G); \\ \end{array}$$

M2¯(G¯)=q(p1)2(p1)M1(G)+M2(G).$$\begin{array}{} \displaystyle \overline{M_{2}}(\overline{G}) = q(p-1)^{2}- (p-1)M_{1}(G) +M_{2}(G). \end{array}$$

Theorem 3

[26] Let G be a graph of order p and size q. Then

M1¯(G) 2W(G)2M1(G)+6q(p1)p3+p2.$$\begin{array}{} \displaystyle \overline{M_{1}}(G) &\geq& 2W(G) -2M_{1}(G) +6q(p-1) -p^{3} +p^{2}. \end{array}$$

Theorem 4

[26] Let G be a nontrivial graph of diameter d ≥ 2. Then

M1¯(G) DD(G)M1(G)2$$\begin{array}{} \displaystyle \overline{M_{1}}(G) &\leq& \frac{DD(G) - M_{1}(G)}{2} \end{array}$$

with equality if and only if d = 2.

The following lemma is helpful for computing the degree of a vertex of line graph.

Lemma 5

Let G be a graph with u, ν ∈ V (G) and e = uν ∈ E(G). Then:

de=du+dv2.$$\begin{array}{} \displaystyle d_e=d_u+d_v-2. \end{array}$$

Lemma 6

[18] Let G be a graph of order p and size q, then the line graph L(G) of G is a graph of order p and size12M1(G)q$\begin{array}{} \displaystyle \frac{1}{2}M_{1}(G) -q \end{array}$.

In this paper we discuss the topological indices and co-indices of the line graphs of Banana tree graph and Firecracker graph and their complement graphs.

Topological indices of line graph of Banana tree graph

In this section we computed the topological indices of the line graph of Banana tree graph. The Banana tree graph Bn,k is the graph obtained by connecting one leaf of each of n copies of an k−star graph with a single root vertex that is distinct from all the stars. The Bn,k has order nk + 1 and size nk. B3,5 is shown in the Fig. 1.

Theorem 7

Let G be the line graph of the Banana tree graph Bn,k. Then

M1(G) = nk3 − 5nl2 + 10nk + n3 − 7n;

M2(G)=12nk472nk3+n2k+10nk214nk+12n412n3n2+8n;$\begin{array}{} \displaystyle {M_2}(G) = \frac{1}{2}n{k^4} - \frac{7}{2}n{k^3} + {n^2}k + 10n{k^2} - 14nk + \frac{1}{2}{n^4} - \frac{1}{2}{n^3} - {n^2} + 8n; \end{array}$

Fig. 1

The Banana tree graph B3,5.

Fig. 2

The line graph of Banana tree graph B3,5.

M3(G) = −n2 + 2nk − 3n;

HM(G) = 2n4 + 2nk4 − 14nk3 + 2n2k + 41nk2 − 57nkn3 − 2n2 + 31n;

R(G)=12n2nn2+n(k1)n+kn2n(k1)(k2+12nk2+6n5nk(k2)2;$\begin{array}{} \displaystyle R(G) = \frac{1}{2}\frac{{{n^2} - n}}{{\sqrt {{n^2}} }} + \frac{n}{{\sqrt {(k - 1)n} }} + \frac{{kn - 2n}}{{\sqrt {(k - 1)(k - 2} }} + \frac{1}{2}\frac{{n{k^2} + 6n - 5nk}}{{\sqrt {{{(k - 2)}^2}} }}; \end{array}$

ABC(G)=12n3+23n+16n15+14n6;$\begin{array}{} \displaystyle ABC(G) = \frac{1}{2}n\sqrt 3 + \frac{2}{3}n + \frac{1}{6}n\sqrt {15} + \frac{1}{4}n\sqrt 6 ; \end{array}$

GA(G)=2n(k1)nk1+n+2n(k2)(k1)(k2)2k3+12(n2+nk25nk+5n);$\begin{array}{} \displaystyle GA(G) = \frac{{2n\sqrt {(k - 1)n} }}{{k - 1 + n}} + \frac{{2n(k - 2)\sqrt {(k - 1)(k - 2)} }}{{2k - 3}} + \frac{1}{2}({n^2} + n{k^2} - 5nk + 5n); \end{array}$

χ(G)=(n2n)24n+nk1+n+kn2n2k3+nk2+6n5nk2k4;$\begin{array}{} \displaystyle \chi (G) = \frac{{({n^2} - n)\sqrt 2 }}{{4\sqrt n }} + \frac{n}{{\sqrt {k - 1 + n} }} + \frac{{kn - 2n}}{{2k - 3}} + \frac{{n{k^2} + 6n - 5nk}}{{\sqrt {2k - 4} }}; \end{array}$

AZI(G)=(n2n)n6(2n2)3+n4(k1)3(k3+n)3+(kn2n)(k1)3(k2)3(2k5)3+(nk2+6n5nk)(k2)6(2k6)3.$\begin{array}{} \displaystyle AZI(G) = \frac{{({n^2} - n){n^6}}}{{{{(2n - 2)}^3}}} + \frac{{{n^4}{{(k - 1)}^3}}}{{{{(k - 3 + n)}^3}}} + \frac{{(kn - 2n){{(k - 1)}^3}{{(k - 2)}^3}}}{{{{(2k - 5)}^3}}} + \frac{{(n{k^2} + 6n - 5nk){{(k - 2)}^6}}}{{{{(2k - 6)}^3}}}. \end{array}$

Proof. The graph G for n = 3 and k = 5 is shown in Fig. 2. By using Lemma 5, it is easy to see that the order of G is nk out of which (k − 2)n vertices are of degree k − 2, n vertices are of degree k − 1 and n vertices are of degree n. Therefore by using Lemma 6, G has size n2+3n+nk23nk2$\begin{array}{} \displaystyle \frac{{{n^2} + 3n + n{k^2} - 3nk}}{2} \end{array}$. We partition the size of G into edges of the type E(du,dν) where is an edge. In G, we get edges of the type E(n,n), E(k−1,n), E(k−1,k−2) and E(k−2,k−2). The number of edges of these types are given in the Table 1. By using Formulas (1)-(9) and Table 1, we can obtain the required results.

The size partition of G.

(du,dν) where uν ∈ E(G)(n,n)(k − 1,n)(k − 1,k − 2)(k − 2,k − 2)
Number of edgesn(n1)2$\begin{array}{} \displaystyle \frac{{n(n - 1)}}{2} \end{array}$n(k − 2)nnk2+6n5nk2$\begin{array}{} \displaystyle \frac{{n{k^2} + 6n - 5nk}}{2} \end{array}$

Theorem 8

Let G be the Web graph Wn. Then

M1(G¯)=2n3k6n2k+nk2+5nk+n3+2n2n;$\begin{array}{} \displaystyle {M_1}(\bar G) = - 2{n^3}k - 6{n^2}k + n{k^2} + 5nk + {n^3} + 2{n^2} - n; \end{array}$

M1¯(G)=M1¯(G¯)=nk3+3nk27nkn3+n2+10n;$\begin{array}{} \displaystyle \overline {{M_1}} (G) = \overline {{M_1}} (\bar G) = - n{k^3} + 3n{k^2} - 7nk - {n^3} + {n^2} + 10n; \end{array}$

M2(G¯)=n4k12n3k28n2k32n2k2+3nk2+3nk+2n3+4n22n;$\begin{array}{} \displaystyle {M_2}(\bar G) = {n^4}k - \frac{1}{2}{n^3}{k^2} - 8{n^2}k - \frac{3}{2}{n^2}{k^2} + 3n{k^2} + 3nk + 2{n^3} + 4{n^2} - 2n; \end{array}$

M2¯(G)=nk3+3nk27nkn3+n2+10n;$\begin{array}{} \displaystyle \overline {{M_2}} (G) = - n{k^3} + 3n{k^2} - 7nk - {n^3} + {n^2} + 10n; \end{array}$

Fig. 3

The Firecracker graph F4,7.

Fig. 4

The line graph of Firecracker graph F4,7.

M2¯(G¯)=n4k+12n3k2n3k+32n2k2+5n2k32nk2112nk+12n4+12n312n2+52n;$\begin{array}{} \displaystyle \overline {{M_2}} (\bar G) = - {n^4}k + \frac{1}{2}{n^3}{k^2} - {n^3}k + \frac{3}{2}{n^2}{k^2} + 5{n^2}k - \frac{3}{2}n{k^2} - \frac{{11}}{2}nk + \frac{1}{2}{n^4} + \frac{1}{2}{n^3} - \frac{1}{2}{n^2} + \frac{5}{2}n; \end{array}$

W(G)(13k)n3+(3k3+6k29k)n2+(4k2+4k+12)n+(nk1)3(nk1)22;$\begin{array}{} \displaystyle W(G) \le \frac{{(1 - 3k){n^3} + ( - 3{k^3} + 6{k^2} - 9k){n^2} + (4{k^2} + 4k + 12)n + {{(nk - 1)}^3} - {{(nk - 1)}^2}}}{2}; \end{array}$

DD(G) ≥ −n3 + 2(−3k2 + 1)n2 + (−k3 + 7k2 − 4k + 13)n.

The size partition of G.

(Su,Sv) where uv ∈ E(G)(n2n + k − 1,n2n + k − 1)(k2 − 4k + n + 4,n2n + k − 1)
Number of edgesn(n1)2$\begin{array}{} \displaystyle \frac{{n(n - 1)}}{2} \end{array}$n
(Su,Sv) where uvE(G)(k2 − 4k + n + 4,k2 − 4k + 5)(k2 − 4k + 5,k2 − 4k + 5)
Number of edges(k − 2)nnk2+6n5nk2$\begin{array}{} \displaystyle \frac{{n{k^2} + 6n - 5nk}}{2} \end{array}$

Proof. By using Theorems (1)-(4) and (7), we can obtain the required results.

Theorem 9

Let G be the Banana tree graph Bn,k. Then

ABC4(G)=12(n2n)2n2+2k2n4(n2+kn1)2+nk2+n23k+1(k24k+n+4)(n2+kn1)+(kn2n)2k28k+n+7(k24k+n+4)(k24k+5)+12(nk2+6n5nk)2k28k+8(k24k+5)2;$\begin{array}{} \displaystyle AB{C_4}(G) = \frac{1}{2}({n^2} - n)\sqrt {\frac{{2{n^2} + 2k - 2n - 4}}{{{{({n^2} + k - n - 1)}^2}}}} + n\sqrt {\frac{{{k^2} + {n^2} - 3k + 1}}{{({k^2} - 4k + n + 4)({n^2} + k - n - 1)}}} + (kn - 2n)\sqrt {\frac{{2{k^2} - 8k + n + 7}}{{({k^2} - 4k + n + 4)({k^2} - 4k + 5)}}} + \frac{1}{2}(n{k^2} + 6n - 5nk)\sqrt {\frac{{2{k^2} - 8k + 8}}{{{{({k^2} - 4k + 5)}^2}}}} ; \end{array}$

GA5(G)=(n2n)(n2+kn1)22n2+2k2n2+2n(k24k+n+4)k2+n23k+3+2(kn2n)(k24k+n+4)(k24k+5)2k28k+n+9+(nk2+6n5nk)(k24k+5)22k28k+10;$\begin{array}{} \displaystyle G{A_5}(G) = ({n^2} - n)\frac{{\sqrt {{{({n^2} + k - n - 1)}^2}} }}{{2{n^2} + 2k - 2n - 2}} + 2n\frac{{\sqrt {({k^2} - 4k + n + 4)} }}{{{k^2} + {n^2} - 3k + 3}} + \frac{{2(kn - 2n)\sqrt {({k^2} - 4k + n + 4)({k^2} - 4k + 5)} }}{{2{k^2} - 8k + n + 9}} + \frac{{(n{k^2} + 6n - 5nk)\sqrt {{{({k^2} - 4k + 5)}^2}} }}{{2{k^2} - 8k + 10}}; \end{array}$

S(G)=(n2n)(n2+kn1)6(2n2+2k2n4)3+n(k24k+n+4)3(n2+kn1)3(k2+n23k+1)3+(kn2n)(k24k+n+4)3(k24k+5)3(2k28k+n+7)3+(nk2+6n5nk)(k24k+5)62(2k28k+8)3.$\begin{array}{} \displaystyle S(G) = \frac{{({n^2} - n){{({n^2} + k - n - 1)}^6}}}{{{{(2{n^2} + 2k - 2n - 4)}^3}}} + \frac{{n{{({k^2} - 4k + n + 4)}^3}{{({n^2} + k - n - 1)}^3}}}{{{{({k^2} + {n^2} - 3k + 1)}^3}}} + \frac{{(kn - 2n){{({k^2} - 4k + n + 4)}^3}{{({k^2} - 4k + 5)}^3}}}{{{{(2{k^2} - 8k + n + 7)}^3}}} + \frac{{(n{k^2} + 6n - 5nk){{({k^2} - 4k + 5)}^6}}}{{2{{(2{k^2} - 8k + 8)}^3}}}. \end{array}$

Proof.

We partition the size of G into edges of the type (Su,Sv) where uv ∈ E(G) as shown in Table 2. Hence we get the required results by using Table 2 and Formulas (10)-(12).

Topological indices of line graph of Firecracker graph

In this section we computed the topological indices of the line graph of Firecracker graph. The Firecracker graph Fn,k is the graph obtained by the concatenation of nk−stars by linking one leaf from each. The Fn,k has order nk and size nk − 1. F4,7 is shown in the Fig. 3.

Theorem 10

Let G be the line graph of the Firecracker graph Fn,k. Then

M1(G) = nk3 − 5nk2 + 12nk − 4k + 8n − 28;

M2(G)=12nk472nk3+11nk210nk2k2+28n4k54$\begin{array}{} \displaystyle {M_2}(G) = \frac{1}{2}n{k^4} - \frac{7}{2}n{k^3} + 11n{k^2} - 10nk - 2{k^2} + 28n - 4k - 54; \end{array}$;

M3(G) = 4nk − 4k − 12n + 16;

HM(G) = 2nk4 + 4nk2 − 14nk3 − 52nk − 10k2 − 2k + 136n − 248;

R(G)=133+233k+23(k1)+14n1+n3k+2k2k1+nk2+6n5nkk2+(n2)k2k$\begin{array}{} \displaystyle R(G) = \frac{1}{3}\sqrt 3 + \frac{2}{3}\sqrt {\frac{3}{k}} + \frac{2}{{\sqrt {3(k - 1)} }} + \frac{1}{4}n - 1 + \frac{{n - 3}}{{\sqrt k }} + 2\sqrt {\frac{{k - 2}}{{k - 1}}} + \frac{{n{k^2} + 6n - 5nk}}{{k - 2}} + (n - 2)\sqrt {\frac{{k - 2}}{k}} ; \end{array}$;

ABC(G)=1315+233k+1k+233kk1+14(n4)6+12(2n6)2+kk+(2k4)2k5(k2)(k1)+12(nk2+6n5nk)2k6(k2)2+(nk2n2k+4)2k4(k2)k$\begin{array}{} \displaystyle ABC(G) = \frac{1}{3}\sqrt {15} + \frac{2}{3}\sqrt 3 \sqrt {\frac{{k + 1}}{k}} + \frac{2}{3}\sqrt 3 \sqrt {\frac{k}{{k - 1}}} + \frac{1}{4}(n - 4)\sqrt 6 + \frac{1}{2}(2n - 6)\sqrt {\frac{{2 + k}}{k}} + (2k - 4)\sqrt {\frac{{2k - 5}}{{(k - 2)(k - 1)}}} + \frac{1}{2}(n{k^2} + 6n - 5nk)\sqrt {\frac{{2k - 6}}{{{{(k - 2)}^2}}}} + (nk - 2n - 2k + 4)\sqrt {\frac{{2k - 4}}{{(k - 2)k}}} ; \end{array}$;

GA(G)=873+43k3+k+43(k3)2+k+8(n3)k4+k+4(k2)(k1)(k2)2k3+12(nk2+8n5nk8)+(n2)k(k2)$\begin{array}{} \displaystyle GA(G) = \frac{8}{7}\sqrt 3 + \frac{{4\sqrt {3k} }}{{3 + k}} + \frac{{4\sqrt {3(k - 3)} }}{{2 + k}} + \frac{{8(n - 3)\sqrt k }}{{4 + k}} + \frac{{4(k - 2)\sqrt {(k - 1)(k - 2)} }}{{2k - 3}} + \frac{1}{2}(n{k^2} + 8n - 5nk - 8) + (n - 2)\sqrt {k(k - 2)} ; \end{array}$;

χ(G)=27+23+k+22+k+2(n3)4+k+2(k2)2k3+12nk2+6n5nk2(k2)+(n2)12(k2)+14(n4)2$\begin{array}{} \displaystyle \chi (G) = \frac{2}{{\sqrt 7 }} + \frac{2}{{\sqrt {3 + k} }} + \frac{2}{{\sqrt {2 + k} }} + \frac{{2(n - 3)}}{{\sqrt {4 + k} }} + \frac{{2(k - 2)}}{{\sqrt {2k - 3} }} + \frac{1}{2}\frac{{n{k^2} + 6n - 5nk}}{{\sqrt {2(k - 2)} }} + (n - 2)\sqrt {\frac{1}{2}(k - 2)} + \frac{1}{4}(n - 4)\sqrt 2 ; \end{array}$;

AZI(G)=1626683375+54k3(1+k)3+128(n3)k3(k+2)3+2(k2)(k1)3(k2)3(2k5)3+(nk26n5nk)(k2)616(k3)3+18(nk2n2k+4)k3$\begin{array}{} \displaystyle AZI(G) = - \frac{{162668}}{{3375}} + \frac{{54{k^3}}}{{{{(1 + k)}^3}}} + \frac{{128(n - 3){k^3}}}{{{{(k + 2)}^3}}} + \frac{{2(k - 2){{(k - 1)}^3}{{(k - 2)}^3}}}{{{{(2k - 5)}^3}}} + \frac{{(n{k^2} - 6n - 5nk){{(k - 2)}^6}}}{{16{{(k - 3)}^3}}} + \frac{1}{8}(nk - 2n - 2k + 4){k^3}. \end{array}$.

Proof.

The graph G for n = 4 and k = 7 is shown in Fig. 4. By using Lemma 5, it is easy to see that the order of G is nk − 1 out of which 2 vertices are of degree 3, 2 vertices are of degree k − 1, n − 3 vertices are of degree 4, n(k − 2) vertices are of degree k − 2, and n − 2 vertices are of degree k. Therefore by using Lemma 6, G has size nk23nk+8n82$\begin{array}{} \displaystyle \frac{{n{k^2} - 3nk + 8n - 8}}{2} \end{array}$. We partition the size of G into edges of the type E(du,dv) where uv is an edge. In G, we get edges of the type E(3,4), E(3,k), E(3,k−1), E(4,4), E(4,k), E(k−1,k−2), E(k−2,k−2), and E(k,k−2). The number of edges of these types are given in the Table 3. By using Formulas (1)-(9) and Table 3, we can obtain the required results.

The size partition of G.

(du,dv) : uv ∈ E(G)(3,4)(3,k)(3,k − 1)(4,4)(4,k)(k − 1,k − 2)(k − 2,k − 2)(k,k − 2)
Number of edges222n − 42n − 62(k − 2)nk25nk+6n2$\begin{array}{} \displaystyle \frac{{n{k^2} - 5nk + 6n}}{2} \end{array}$(n − 2)(k − 2)

Theorem 11

Let G be the line graph of the Firecracker graph Fn,k. Then

M1(G¯)=2nk216n2k+19nk4k+40n61;$\begin{array}{} \displaystyle {M_1}(\bar G) = 2n{k^2} - 16{n^2}k + 19nk - 4k + 40n - 61; \end{array}$

M1¯(G)=M1¯(G¯)=8n2k14nk+4k24n+44;$\begin{array}{} \displaystyle \overline {{M_1}} (G) = \overline {{M_1}} (\bar G) = 8{n^2}k - 14nk + 4k - 24n + 44; \end{array}$

M2(G¯)=32nk3+8n2k215nk2+32n2k56nk+2k2+14k160n+4092;$\begin{array}{} \displaystyle {M_2}(\bar G) = \frac{3}{2}n{k^3} + 8{n^2}{k^2} - 15n{k^2} + 32{n^2}k - 56nk + 2{k^2} + 14k - 160n + \frac{{409}}{2}; \end{array}$

M2¯(G)=8n2k224n2k12nk2+2k2+32n2+28nk96n+6k+100;$\begin{array}{} \displaystyle \overline {{M_2}} (G) = 8{n^2}{k^2} - 24{n^2}k - 12n{k^2} + 2{k^2} + 32{n^2} + 28nk - 96n + 6k + 100; \end{array}$

M2¯(G¯)=8n2k224n2k+9nk2+52nk2k212k+60n126;$\begin{array}{} \displaystyle \overline {{M_2}} (\bar G) = - 8{n^2}{k^2} - 24{n^2}k + 9n{k^2} + 52nk - 2{k^2} - 12k + 60n - 126; \end{array}$

W(G)8n2k+12nk2+212nk2k+20n31;$\begin{array}{} \displaystyle W(G) \le - 8{n^2}k + \frac{1}{2}n{k^2} + \frac{{21}}{2}nk - 2k + 20n - 31; \end{array}$

DD(G) ≥ nk3 − 5nk2 + 16n2k − 16nk + 2k − 40n + 60.

Proof.

By using Theorems (1)-(4) and (10), we can obtain the required results.

Theorem 12

Let G be the line graph of the Firecracker graph Fn,k. Then

ABC4(G)=12(k2)(k3)(n2)2k28k+11(k24k+6)(k24k+7)+(n4)(k2)\2k28k+16(k24k+12)(k24k+6)+(k23k+2)2k24k+7+2k42k28k+15(k24k+11)(k24k+6)+2k22k+122k35k2+10k+33+2k22k+162k3k26k+77+2k22k+172k3k24k+84+2k22k+82k35k2+2k+21+(n5)2k22k+18(k24k+12)(4+k)+24k+134k2+30k+56+4k+24k2+20k+21+12(n6)2k+7k+4;$\begin{array}{} \displaystyle AB{C_4}(G) = \frac{1}{2}(k - 2)(k - 3)(n - 2)\sqrt {\frac{{2{k^2} - 8k + 11}}{{({k^2} - 4k + 6)({k^2} - 4k + 7)}}} + (n - 4)(k - 2){\rm{\backslash }}\sqrt {\frac{{2{k^2} - 8k + 16}}{{({k^2} - 4k + 12)({k^2} - 4k + 6)}}} + ({k^2} - 3k + 2)\sqrt {\frac{2}{{{k^2} - 4k + 7}}} + 2k - 4\sqrt {\frac{{2{k^2} - 8k + 15}}{{({k^2} - 4k + 11)({k^2} - 4k + 6)}}} + 2\sqrt {\frac{{{k^2} - 2k + 12}}{{2{k^3} - 5{k^2} + 10k + 33}}} + 2\sqrt {\frac{{{k^2} - 2k + 16}}{{2{k^3} - {k^2} - 6k + 77}}} + 2\sqrt {\frac{{{k^2} - 2k + 17}}{{2{k^3} - {k^2} - 4k + 84}}} + 2\sqrt {\frac{{{k^2} - 2k + 8}}{{2{k^3} - 5{k^2} + 2k + 21}}} + (n - 5)\sqrt 2 \sqrt {\frac{{{k^2} - 2k + 18}}{{({k^2} - 4k + 12)(4 + k)}}} + 2\sqrt {\frac{{4k + 13}}{{4{k^2} + 30k + 56}}} + 4\sqrt {\frac{{k + 2}}{{4{k^2} + 20k + 21}}} + \frac{1}{{\sqrt 2 }}(n - 6)\frac{{\sqrt {2k + 7} }}{{k + 4}}; \end{array}$

GA5=4(2k+3)(k24k+7)k22k+10+2(2k+3)(2k+7)2k+5+4(2k+3)(k24k+11)k22k+14+4(2k+7)(k24k+11)k22k+18+4(2k+7)(k24k+12)k22k+19+4(2k+7)(2k+8)4k+15+2(k2)(k24k+5)(k24k+7)k24k+6+(n2)(k25k+6)(k24k+6)(k24k+7)2k28k+13+4(k2)(k24k+11)(k24k+6)2k28k+17+(n4)(k2)(k24k+12)(k24k+6)k24k+9+4(n5)(k24k+12)(2k+8)k22k+20+(k25k+6)(k24k+5)(k24k+7)k24k+6+n6;$\begin{array}{} \displaystyle G{A_5} = 4\frac{{\sqrt {(2k + 3)({k^2} - 4k + 7)} }}{{{k^2} - 2k + 10}} + \frac{{2\sqrt {(2k + 3)(2k + 7)} }}{{2k + 5}} + \frac{{4\sqrt {(2k + 3)({k^2} - 4k + 11)} }}{{{k^2} - 2k + 14}} + \frac{{4\sqrt {(2k + 7)({k^2} - 4k + 11)} }}{{{k^2} - 2k + 18}} + \frac{{4\sqrt {(2k + 7)({k^2} - 4k + 12)} }}{{{k^2} - 2k + 19}} + \frac{{4\sqrt {(2k + 7)(2k + 8)} }}{{4k + 15}} + \frac{{2(k - 2)\sqrt {({k^2} - 4k + 5)({k^2} - 4k + 7)} }}{{{k^2} - 4k + 6}} + \frac{{(n - 2)({k^2} - 5k + 6)\sqrt {({k^2} - 4k + 6)({k^2} - 4k + 7)} }}{{2{k^2} - 8k + 13}} + \frac{{4(k - 2)\sqrt {({k^2} - 4k + 11)({k^2} - 4k + 6)} }}{{2{k^2} - 8k + 17}} + \frac{{(n - 4)(k - 2)\sqrt {({k^2} - 4k + 12)({k^2} - 4k + 6)} }}{{{k^2} - 4k + 9}} + \frac{{4(n - 5)\sqrt {({k^2} - 4k + 12)(2k + 8)} }}{{{k^2} - 2k + 20}} + \frac{{({k^2} - 5k + 6)\sqrt {({k^2} - 4k + 5)({k^2} - 4k + 7)} }}{{{k^2} - 4k + 6}} + n - 6{\rm{;}} \end{array}$

S(G)=2(2k+3)3(k24k+7)3(k22k+8)3+(2k+3)3(2k+7)332(2+k)3+2(2k+3)3(k24k+11)3(k22k+12)3+2(2k+7)3(k24k+11)3(k22k+16)3+2(2k+7)3(k24k+12)3(k22k+17)3+2(2k+7)3(2k+8)3(4k+13)3+8(n6)(4+k)6(2k+7)3+14(k2)(k24k+7)3+(n2)(k2)(k3)(k24k+6)3(k24k+7)32(2k28k+11)3+2(k2)(k24k+11)3(k24k+6)3(2k28k+15)3+(n4)(k2)(k24k+12)3(k24k+6)38(k24k+8)3+16(n5)(k24k+12)3(4+k)3(k22k+18)3+18(k2)(k3)(k24k+7)3.$\begin{array}{} \displaystyle S(G) = \frac{{2{{(2k + 3)}^3}{{({k^2} - 4k + 7)}^3}}}{{{{({k^2} - 2k + 8)}^3}}} + \frac{{{{(2k + 3)}^3}{{(2k + 7)}^3}}}{{32{{(2 + k)}^3}}} + \frac{{2{{(2k + 3)}^3}{{({k^2} - 4k + 11)}^3}}}{{{{({k^2} - 2k + 12)}^3}}} + \frac{{2{{(2k + 7)}^3}{{({k^2} - 4k + 11)}^3}}}{{{{({k^2} - 2k + 16)}^3}}} + \frac{{2{{(2k + 7)}^3}{{({k^2} - 4k + 12)}^3}}}{{{{({k^2} - 2k + 17)}^3}}} + \frac{{2{{(2k + 7)}^3}{{(2k + 8)}^3}}}{{{{(4k + 13)}^3}}} + \frac{{8(n - 6){{(4 + k)}^6}}}{{{{(2k + 7)}^3}}} + \frac{1}{4}(k - 2){({k^2} - 4k + 7)^3} + \frac{{(n - 2)(k - 2)(k - 3){{({k^2} - 4k + 6)}^3}{{({k^2} - 4k + 7)}^3}}}{{2{{(2{k^2} - 8k + 11)}^3}}} + \frac{{2(k - 2){{({k^2} - 4k + 11)}^3}{{({k^2} - 4k + 6)}^3}}}{{{{(2{k^2} - 8k + 15)}^3}}} + \frac{{(n - 4)(k - 2){{({k^2} - 4k + 12)}^3}{{({k^2} - 4k + 6)}^3}}}{{8{{({k^2} - 4k + 8)}^3}}} + \frac{{16(n - 5){{({k^2} - 4k + 12)}^3}{{(4 + k)}^3}}}{{{{({k^2} - 2k + 18)}^3}}} + \frac{1}{8}(k - 2)(k - 3){({k^2} - 4k + 7)^3}. \end{array}$

Proof.

We partition the size of G into edges of the type (Su,Sv) where uv ∈ E(G) as shown in Table 4. Hence we get the required results by using Table 4 and Formulas (10)-(12).

The size partition of G.

(Su,Sv) : uv ∈ E(G)(2k + 3,k2 − 4k + 7)(2k + 3,2k + 7)(2k + 3,k2 − 4k + 11)(2k + 7,k2 − 4k + 11)
Number of edges2222
(Su,Sv) : uv ∈ E(G)(2k + 7,k2 − 4k + 12)(2k + 7,2k + 8)(2k + 8,2k + 8)(k2 − 4k + 5,k2 − 4k + 7)
Number of edges22n − 62(k − 2)
(Su,Sv) : uv ∈ E(G)(k2 − 4k + 6,k2 − 4k + 7)(k2 − 4k + 11,k2 − 4k + 6)(k2 − 4k + 12,k2 − 4k + 6)(k2 − 4k + 12,2k + 8)
Number of edges(n2)(k25k+6)2$\begin{array}{} \displaystyle \frac{{(n - 2)({k^2} - 5k + 6)}}{2} \end{array}$2(k − 2)(n − 4)(k − 2)2(n − 5)
(Su,Sv) : uv ∈ E(G)(k2 − 4k + 5,k2 − 4k + 7)   
Number of edgesk2 − 5k + 6   

Conclusion

In this paper, certain degree based topological indices, i.e., first Zagreb index (coindex), second Zagreb index (coindex), third Zagreb index, first hyper-Zagreb index, atom-bond connectivity index, fourth atom-bond connectivity index, sum connectivity index, Randić connectivity index, augmented Zagreb index, Sanskruti index, geometric-arithmetic connectivity index and fifth geometric-arithmetic connectivity of the line graphs of Banana tree graph and Firecracker Graph is solved here analytically.

eISSN:
2444-8656
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics