Cite

Introduction

Let G be simple connected graph with vertex set V(G) and edge set E(G). The number of elements in the set V(G) and E(G) are called the order and size of the graph G, respectively. In a graph G, the distance between two vertices is the shortest length path connecting them. For a vertex νV (G), the eccentricity of ν is the maximum distance between ν and any other vertex of G denoted as ε (ν). The maximum eccentricity is called the diameter and the minimum eccentricity is called the radius of the graph G. In a graph G the degree of a vertex ν is the number of its first neighbors, d(v).

Fig. 1

A general representation of Polycyclic Aromatic Hydrocarbons PAHk.

Topological index is a numerical descriptor of the molecular structure derived from the corresponding molecular graph. Many topological indices are widely used for quantitative structure-property relationship (QSPR) and quantitative structure-activity relationship (QSAR) studies.

Gutman et.al. [1] proposed vertex degree based topological indices of a graph, named as first Zagreb index M1(G) and second Zagreb index M2(G). These are defined as:

M1(G)=ΣνV(G)d(ν)2M2(G)=ΣuνV(G)d(u)d(ν)$$\begin{array}{} \displaystyle \begin{array}{*{20}{c}} {{M_1}(G) = {\Sigma _{\nu \in V(G)}}d{{(\nu )}^2}} \hfill \\ {{M_2}(G) = {\Sigma _{u\nu \in V(G)}}d(u) \cdot d(\nu )} \hfill \\ \end{array} \end{array}$$

In 2010, Todeschini et. al. [2] and [3] introduced the multiplicative versions of the above Zagreb indices named as multiplicative Zagreb indices, which are defined as follows:

1(G)=νV(G)d(ν)22(G)=uνE(G)d(u)d(ν)$$\begin{array}{} \displaystyle \begin{array}{*{20}{c}} {{\prod _1}(G) = {\prod _{\nu \in V(G)}}d{{(\nu )}^2}} \hfill \\ {{\prod _2}(G) = {\prod _{u\nu \in E(G)}}d(u) \cdot d(\nu )} \hfill \\ \end{array} \end{array}$$

More history and results on Zagreb and multiplicative Zagreb indices can be found in [4]– [10].

Recently, Ghorbani and Hosseinzadeh [11] defined the eccentric versions of Zagreb indices. These are named as third and fourth Zagreb indices and defined as follows:

M3(G)=ΣuνE(G)(ε(u)+ε(ν))M4(G)=ΣνV(G)ε(ν)2$$\begin{array}{} \displaystyle \begin{array}{*{20}{c}} {{M_3}(G) = {\Sigma _{u\nu \in E(G)}}(\varepsilon (u) + \varepsilon (\nu ))} \hfill \\ {{M_4}(G) = {\Sigma _{\nu \in V(G)}}\varepsilon {{(\nu )}^2}} \hfill \\ \end{array} \end{array}$$

The Polycyclic Aromatic hydrocarbons PAHk for all positive integer number k is ubiquitous combustion products. They have been implicated as carcinogens and play a role in graphitization of organic materials. A general representation of Polycyclic Aromatic Hydrocarbons is shown in Figure 1. For more details see [12]– [16]. In this paper, we compute the third Zagreb index of Polycyclic Aromatic Hydrocarbons PAHk.

Computation Techniques and Main Results

In this section, we discussed the techniques to find the eccentricity of vertices of the Polycyclic Aromatic Hydrocarbons PAHk and gave the closed formula of third Zagreb index of PAHk. We use the ring cut method [17,18] to divide the vertices in partition sets. From Figure 2 we have the vertex set as V(PAHk)={αz,l,βz,li,γz,ji:l=1,...,k,jZi,lZi1&zZ6}$\begin{array}{} \displaystyle V(PA{H_k}) = \left\{ {{\alpha _{z,l}},\beta _{z,l}^i,\gamma _{z,j}^i:l = 1,...,k,j \in {Z_i},l \in {Z_{i - 1}}\& z \in {Z_6}} \right\} \end{array}$, where α,β and γ represents the vertices with degree 1, 3 and 3, respectively, and Zi = {1,2,...,i}.

Fig. 2

Another representation of Polycyclic Aromatic Hydrocarbons (PAHk).

Theorem 1

Let G be the Polycyclic aromatic hydrocarbons PAHk. Then the third Zagreb index of PAHk is equal to

M3(PAHk)=6i=1k(12i(i+k)+2k9i+5).$$\begin{array}{} \displaystyle {M_3}(PA{H_k}) = 6\mathop \Sigma \limits_{i = 1}^k (12i(i + k) + 2k - 9i + 5). \end{array}$$

Proof. To obtain the final result we used the ring cut method. The i-th ring cut contains 6(2i − 1) vertices also d(βz,li,βz,lk)=d(γz,ji,γz,jk)=2(ki)$\begin{array}{} \displaystyle d(\beta _{z,l}^i,\beta _{z,l}^k) = d(\gamma _{z,j}^i,\gamma _{z,j}^k) = 2(k - i) \end{array}$. So, we have

1. For all vertices αz,j of PAHk ( jZk, zZ6)

ε(αz,j)=d(αz,j,γz,jk)1+d(γz,jk,γz,jk)4k1+d(γz,jk,αz,j)1=4k+1$$\begin{array}{} \displaystyle \varepsilon (\alpha _{z,j}^{}) = \underbrace {d({\alpha _{z,j}},\gamma _{z,j}^k)}_1 + \underbrace {d(\gamma _{z,j}^k,\gamma _{z',j'}^k)}_{4k - 1} + \underbrace {d(\gamma _{z',j'}^k,{\alpha _{z',j'}})}_1 = 4k + 1 \end{array}$$

1. For all vertices βz,ji$\begin{array}{} \displaystyle \beta _{z,j}^i \end{array}$of PAHk (∀i = 1,···,k;zZ6, j ∊ Zi−1)

ε(βz,ji)=d(βz,ji,βz+3,ji)4i3+d(βz+3,ji,γz+3,jk)2(ki)+1+d(γz+3,jk,αz+3,j)1=2k+2i1.$$\begin{array}{} \displaystyle \textit{$\varepsilon (\beta_{z,j}^{i} )=\underbrace{d(\beta _{z,j}^{i} ,\beta _{z+3,j}^{i} )}_{4i-3}+\underbrace{d(\beta _{z+3,j}^{i} ,\gamma _{z+3,j}^{k} )}_{2(k-i)+1}+\underbrace{d(\gamma _{z+3,j}^{k} ,\alpha _{z+3,j} )}_{1}=2k+2i-1$.} \end{array}$$

1. For all vertices γz,ji$\begin{array}{} \displaystyle \gamma _{z,j}^i \end{array}$ of PAHn (∀i = 1,···,k;zZ6, j ∊ Zi.

ε(γz,ji)=d(γz,ji,γz+3,ji)4i1+d(γz+3,ji,γz+3,jk)2(ki)+d(γz+3,jk,αz+3,j)1=2(k+i).$$\begin{array}{} \displaystyle \textit{$\varepsilon (\gamma _{z,j}^{i} )=\underbrace{d(\gamma _{z,j}^{i},\gamma _{z+3,j}^{i} )}_{4i-1}+\underbrace{d(\gamma_{z+3,j}^{i},\gamma _{z+3,j}^{k} )}_{2(k-i)}+\underbrace{d(\gamma_{z+3,j}^{k},\alpha _{z+3,j} )}_{1}=2(k+i)$.} \end{array}$$

Now we apply these results on the definition of third Zagreb index to obtain the required result.

M3(PAHk)=uvE(G)(ε(u)+ε(v))=(βz,jiγz,jiE(Hk)(ε(βz,ji)+ε(γz,ji)))+(βz,jiγz,j+1iE(Hk)(ε(βz,ji)+ε(γz,j+1i)))+(βz,jiγz,ji1E(Hk)(ε(βz,ji+1)+ε(γz,ji1)))+(γz,iiγz+1,1iE(Hk)(ε(γz,ii)+ε(γz+1,1i)))+(αz,jγz,jk(ε(αz,j)+ε(γz,jk)))=z=16(i=2kj=1i(ε(βz,ji)+ε(γz,ji)))+z=16(i=2kj=1i(ε(βz,ji)+ε(γz,j+1i)))+z=16(i=2kj=1i(ε(βz,ji+1)+ε(γz,ji1)))+z=16(i=2k(ε(γz,ii)+ε(γz+1,1i)))+z=16(i=1k(ε(αz,j)+ε(γz,jk)))=i=2k6(i1)[(2k+2i1)+(2k+2i2)]+i=2k6(i1)[(2k+2i1)+(2k+2i2)]+i=1k6i[(2k+2i1)+(2k+2i)]+i=1k6[2(2k+2i1)]+i=1k6[(4k+1)+(2k+2i)]=i=1k(12(i1)(4k+4i3))+i=1k6i(4k+4i1)+i=1k12(2k+2i1)+i=1k6(6k+2i+1)=6i=1k(12i(i+k)+2k9i+5)$$\begin{array}{} \displaystyle \begin{array}{*{20}{c}} {{M_3}\left( {PA{H_k}} \right)} \hfill & = \hfill & {\sum\limits_{uv \in E(G)} {\left( {\varepsilon \left( u \right) + \varepsilon \left( v \right)} \right)} } \hfill \\ {} \hfill & = \hfill & {\left( {{\sum _{\beta _{z,j}^i\gamma _{z,j}^i \in {\rm{E}}\left( {{H_k}} \right)}}\left( {\varepsilon \left( {\beta _{z,j}^i} \right) + \varepsilon \left( {\gamma _{z,j}^i} \right)} \right)} \right) + \left( {{\sum _{\beta _{z,j}^i\gamma _{z,j + 1}^i \in {\rm{E}}\left( {{H_k}} \right)}}\left( {\varepsilon \left( {\beta _{z,j}^i} \right) + \varepsilon \left( {\gamma _{z,j + 1}^i} \right)} \right)} \right)} \hfill \\ {} \hfill & {} \hfill & { + \left( {{\sum _{\beta _{z,j}^i\gamma _{z,j}^{i - 1} \in {\rm{E}}\left( {{H_k}} \right)}}\left( {\varepsilon \left( {\beta _{z,j}^{i + 1}} \right) + \varepsilon \left( {\gamma _{z,j}^{i - 1}} \right)} \right)} \right) + \left( {{\sum _{\gamma _{z,i}^i\gamma _{z + 1,1}^i \in {\rm{E}}\left( {{H_k}} \right)}}\left( {\varepsilon \left( {\gamma _{z,i}^i} \right) + \varepsilon \left( {\gamma _{z + 1,1}^i} \right)} \right)} \right)} \hfill \\ {} \hfill & {} \hfill & { + \left( {{\sum _{{\alpha _{z,j}}\gamma _{z,j}^k}}\left( {\varepsilon \left( {{\alpha _{z,j}}} \right) + \varepsilon \left( {\gamma _{z,j}^k} \right)} \right)} \right)} \hfill \\ {} \hfill & = \hfill & {\sum\limits_{z = 1}^6 {\left( {\sum\limits_{i = 2}^k {\sum\limits_{j = 1}^i {\left( {\varepsilon \left( {\beta _{z,j}^i} \right) + \varepsilon \left( {\gamma _{z,j}^i} \right)} \right)} } } \right)} + \sum\limits_{z = 1}^6 {\left( {\sum\limits_{i = 2}^k {\sum\limits_{j = 1}^i {\left( {\varepsilon \left( {\beta _{z,j}^i} \right) + \varepsilon \left( {\gamma _{z,j + 1}^i} \right)} \right)} } } \right)} } \hfill \\ {} \hfill & {} \hfill & { + \sum\limits_{z = 1}^6 {\left( {\sum\limits_{i = 2}^k {\sum\limits_{j = 1}^i {\left( {\varepsilon \left( {\beta _{z,j}^{i + 1}} \right) + \varepsilon \left( {\gamma _{z,j}^{i - 1}} \right)} \right)} } } \right)} + \sum\limits_{z = 1}^6 {\left( {\sum\limits_{i = 2}^k {\left( {\varepsilon \left( {\gamma _{z,i}^i} \right) + \varepsilon \left( {\gamma _{z + 1,1}^i} \right)} \right)} } \right)} } \hfill \\ {} \hfill & {} \hfill & { + \sum\limits_{z = 1}^6 {\left( {\sum\limits_{i = 1}^k {\left( {\varepsilon \left( {{\alpha _{z,j}}} \right) + \varepsilon \left( {\gamma _{z,j}^k} \right)} \right)} } \right)} } \hfill \\ {} \hfill & = \hfill & {\sum\limits_{i = 2}^k 6 (i - 1)\left[ {\left( {2k + 2i - 1} \right) + \left( {2k + 2i - 2} \right)} \right] + \sum\limits_{i = 2}^k 6 (i - 1)\left[ {\left( {2k + 2i - 1} \right) + \left( {2k + 2i - 2} \right)} \right]} \hfill \\ {} \hfill & {} \hfill & { + \sum\limits_{i = 1}^k 6 i\left[ {\left( {2k + 2i - 1} \right) + \left( {2k + 2i} \right)} \right] + \sum\limits_{i = 1}^k 6 \left[ {2\left( {2k + 2i - 1} \right)} \right]} \hfill \\ {} \hfill & {} \hfill & { + \sum\limits_{i = 1}^k 6 \left[ {\left( {4k + 1} \right) + \left( {2k + 2i} \right)} \right]} \hfill \\ {} \hfill & = \hfill & {\sum\limits_{i = 1}^k {\left( {12\left( {i - 1} \right)\left( {4k + 4i - 3} \right)} \right)} + \sum\limits_{i = 1}^k 6 i\left( {4k + 4i - 1} \right) + \sum\limits_{i = 1}^k 1 2\left( {2k + 2i - 1} \right)} \hfill \\ {} \hfill & {} \hfill & { + \sum\limits_{i = 1}^k 6 \left( {6k + 2i + 1} \right)} \hfill \\ {} \hfill & = \hfill & {6\sum\limits_{i = 1}^k {\left( {12i\left( {i + k} \right) + 2k - 9i + 5} \right)} } \hfill \\ \end{array} \end{array}$$

which ends the proof.

eISSN:
2444-8656
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics