1. bookVolume 1 (2016): Issue 2 (May 2016)
Journal Details
License
Format
Journal
eISSN
2543-683X
First Published
30 Mar 2017
Publication timeframe
4 times per year
Languages
English
Open Access

Knowledge Representation in Patient Safety Reporting: An Ontological Approach

Published Online: 01 Sep 2017
Volume & Issue: Volume 1 (2016) - Issue 2 (May 2016)
Page range: 75 - 91
Received: 10 Nov 2015
Accepted: 06 May 2016
Journal Details
License
Format
Journal
eISSN
2543-683X
First Published
30 Mar 2017
Publication timeframe
4 times per year
Languages
English
Introduction

Medical errors, near misses, and unsafe conditions cause patient harms and reduced healthcare quality. A recent study reported that the estimated annual cost of medical errors in the United States has risen to $17.1 billion (van Den Bos et al., 2011). The growing cost of medical errors is observed in other countries as well and has become a global patient safety concern (Baker et al., 2004; Vanderheyden et al., 2004; Williams & Osborn, 2006). The Institute of Medicine (IOM) and the Agency for Healthcare Research and Quality (AHRQ) recommended the use of patient safety reporting systems (PSRS) to reduce future mistakes from the incurred incidents (Brennan et al., 1991; Erickson et al., 2003; Kohn, Corrigan, & Donaldson, 2000). Moving from paper-based reporting systems to electronic systems, the development of PSRS has been documented since the late 1970s (Elliott, Martin, & Neville, 2014). A well-functioning PSRS benefits the communication efficiency (Cochrane et al., 2009; Elliott et al., 2014), the quality improvement of reports across various healthcare settings and types of errors (Braithwaite, Westbrook, & Travaglia, 2008; Cochrane et al., 2009; Kuo et al., 2012; Levtzion-Korach et al., 2009), and user experience (Braithwaite et al., 2010; Braithwaite, Westbrook, & Travaglia, 2008; Cochrane et al., 2009; Frankel, Gandhi, & Bates, 2003; Keistinen & Kinnunen, 2007; Levtzion-Korach et al., 2009; Mekhjian et al., 2004; Tepfers, Louie, & Drouillard, 2006; Tuttle et al., 2004). Despite diligent efforts and impressive progress in PSRS, ongoing challenges remain: (1) Low quality of data. Many efforts were made toward increasing the quantity of reports, yet data quality remains a major concern. A detailed discussion centers on the dilemma of using structured or unstructured data formats in the reporting (Gong, 2011; Hua, Wang, & Gong, 2014). (2) Challenge of processing text data. Most of the patient safety reports that convey information for analyzing are written in natural language (Lamont et al., 2009; Newman, 2003; Steiner, 2005). However, it has been a technical challenge for analyzing text data in a timely manner (Hsieh & Shannon, 2005; Pope, Ziebland, & Mays, 2000). (3) Lack of a common language system. In the biomedical domain, a controlled vocabulary of terms and concepts can enhance the interoperability of semantic data (Bodenreider, 2004). (4) Difficulty of classification. Classifying patient safety reports is recognized as a cornerstone of reporting and data analysis (Leape & Abookire, 2005). However, developing a mature strategy of classifying patient safety reports remains remarkably challenging (Erickson et al., 2003).

A research agenda to address these problems should include building a patient safety ontology, where a uniform knowledge base for representing patient safety knowledge is in the center of the discussion (Chang et al., 2005). Healthcare institutes worldwide have been developing such a knowledge base, such as a taxonomy for classifying and monitoring medical incidents released by Australian Patient Safety Foundation (APSF) (Brixey, Johnson, & Zhang, 2002; Chang et al., 2005; Dovey et al., 2002; Greens, 2006; Spigelman & Swan, 2005; Suresh et al., 2004; Woods & Doan-Johnson, 2002; Woods et al., 2005; Zhang et al., 2004). Nevertheless, ontology is recognized as an advanced solution for providing machine-readable representations for semantic information (Allemang & Hendler, 2011; Ananiadou & McNaught, 2006; Maynard, Li, & Peters, 2008; McGuinness et al., 2004). Ontologies have several advantages. Firstly, serving as a tool of terminology management, ontologies provide a clear representation and communication of complex semantic relationships. Secondly, they support information exchange among biomedical information systems, especially when the biomedical information is growing rapidly (Alexander, 2006; Kumar, Yip, Smith, & Grenon, n.d.). Thirdly, ontologies facilitate knowledge discovery and reuse (Andronis et al., 2011; Bodenreider, 2008; Gottgtroy, Kasabov, & MacDonell, 2004; Mukherjea, 2005; Smith et al., 2007). Biomedical knowledge is complex in content and huge in amount but arduous to process. Ontologies form a number of standards of annotating concepts and relations and thus make semantic reasoning available.

In this paper, we described our initial efforts to design and implement a patient safety ontology for US hospitals in the context of PSRS. We used semantic information from PSRS in US hospitals to generate the ontology. We further discussed the application of the ontology in PSRS. The World Health Organization (WHO) has reported initial efforts to achieve better integration and interoperability of patient safety information in their patient safety program (Larizgoitia, Bouesseau, & Kelley, 2013; Runciman et al., 2009; Sherman et al., 2009). Some other studies followed up with a focus of ontological approaches (Rodrigues et al., 2007; Souvignet et al., 2011; Souvignet & Rodrigues, 2014). Our efforts of constructing a patient safety ontology fit in the context of patient safety reporting in the US.

Design

The development of the ontology follows OBO Foundry principles to incorporate interoperable and accurate representations from the clinical reality (Smith et al., 2007). The ontology construction began with designing a concept ontology to determine the overall structure. An evaluation was conducted in order to validate this structure. Accordingly, we incorporated annotated terms from real-world patient safety reports into the concept ontology. Table 1 demonstrates the general workflow.

Workflow chart of ontology construction.

ProjectTaskMaterialsMethod/toolOutcome
ConceptontologyKnowledge acquisition Ontology implementationICPS and the Common Formats Semantic knowledge organized in hierarchiesExpert analysis Expert review Ontology engineeringSemantic knowledge organized in hierarchies A concept ontology with a hierarchical structure of patient safety knowledge
EvaluationHuman evaluationHierarchical classes from the concept ontology Real-world reports from Web M&MSurvey instrument StatisticsQuality indicators of the classification by domain experts
Computational evaluationConcept ontology in OWLStatistical analysis Consistency checkingQuantitative indicators of the ontology
Detailed ontologyAnnotationConcept ontology Dataset from a university hospitalExpert annotationA detailed ontology with enriched terms, relations, and other ontological specifications

Developing a Concept Ontology

The concept ontology describes the most general concepts and categories across specific domains in patient safety reports. It also serves as a guideline for semantic annotation and integration in the later processes of constructing a detailed ontology, which includes instances of the concepts and other ontological specifications.

Knowledge Acquisition

Semantic patient safety knowledge from the real world is the basic element for constructing a patient safety ontology. We extracted patient safety knowledge from the International Classification for Patient Safety (ICPS) and the Common Definitions and Reporting Formats (a.k.a., the Common Formats) by a method to incorporate the respective advantageous features of the two. ICPS is a conceptual framework developed by the WHO in 2009, representing concepts and preferred terminologies used in patient safety reports (Sherman et al., 2009). The Common Formats, developed by AHRQ, are a set of guidelines and paper-based formats for specifying and collecting safety event information in the US, which range from general concerns to frequently occurred and/or serious adverse event.

Ontology Implementation

A formal language is used to standardize and normalize the expression of objects and their relations, in addition to computerized processing which can be done with XML (Rossi, Consorti, & Galeazzi, 1998). We used Web Ontology Language (OWL) as it represents rich and complex semantic information (Baader, 2003; McGuinness et al., 2004). The data were implemented in Protégé 4.3.0. We employed an iterative process to construct the ontology, which is described in the following three steps:

Data transformation. A data transformation was employed to integrate the concepts and terms in ICPS and the Common Formats, where inevitable ambiguities and synonyms exist. Three domain experts (CL, XW, and KA), who have background knowledge in both patient safety and ontology engineering, performed the transformation by reviewing the concepts and terms in ICPS and the Common Formats. A final decision was made only if an agreement was reached among the three experts.

Adjustment of hierarchical structure. In many cases, a unique concept may be categorized in different classes or even shown under different names. Since the ICPS has been recognized as an adequate classification for representing patient safety knowledge hierarchy (Sherman et al., 2009; Souvignet et al., 2011), we adopted ICPS’s hierarchical structure and made minor adjustments with exceptions when a creation of new classes was necessary. Such adjustments include merging duplicate subcategories, concepts, and terms. Parent-child relations were defined by taxonomic subsumption, ‘isA’ (e.g. A is a subclass of B). Alias relations were defined by ‘EquivalentTo’ (e.g. A is equivalent to B) (Allemang & Hendler, 2011). We also defined other relations such as ‘hasParticipant’, ‘hasOutcome’, ‘involvesActivity’, etc.

Merging the Common Formats with ICPS. We built the ontology in Protégé to merge structures, concepts, and terms from the Common Formats and ICPS with adequate properties created.

Evaluation

The evaluation examines whether the concept ontology represents an adequate knowledge for patient safety reports. The ontology first needed to pass the machine-based evaluation, by which the Protégé build-in module (HermiT 1.3.8) performed consistency checking (Shearer, Motik, & Horrocks, 2008). Secondly, we employed human evaluation by using survey instruments and statistical analysis. The human evaluation procedure has two phases. In the first phase, we developed a survey instrument for assessing biomedical ontologies in the scope of patient safety events. The questions in the survey instrument were adapted to cover eight dimensions for evaluating an ontology (Brank, Grobelnik, & Mladenić, 2005; Burton-Jones et al., 2005). To ensure that the survey instrument reaches a sufficient confidence level of reliability and validity for use, we employed a pre-assessment to measure its content-validity and inter-rater reliability. The content validity measures to what extent the designed questions subjectively reflect the tasks they purpose to measure (Lynn, 1986; Polit & Beck, 2006). The inter-rater reliability measures the degree of agreement among raters (Fleiss, Levin, & Paik, 1981). The survey instrument is valid for use only if no major revision is needed. In the second phase, two domain experts (JW and YG) who are experienced in reviewing patient safety reports used the survey instrument to assess the concept ontology. When taking the survey, they were asked to annotate, using the concept ontology, the de-identified patient safety reports from Morbidity and Mortality Rounds on the Web (WebM&M). WebM&M is an online platform that publishes reported patient safety events and expert commentaries (Wachter et al., 2005). Table 2 demonstrates the sample questions in the pre-assessment and the survey instrument.

A sample set of questions demonstrates the design of the survey instrument and the pre-assessment for validating the survey instrument.

DimensionsQuestions in the survey instrumentQuestions in the pre-assessment
CorrectnessFor the case you reviewed, the terms used in the taxonomy are well-formed and the words are well-arranged.Does the scale purport to measure “The correctness of syntax”?
MeaningfulnessFor the case you reviewed, the terms used in the taxonomy can represent the concepts in the real-world setting.Does the scale purport to measure “The meaningfulness of terms”?
ClarityFor the case you reviewed, the terms that appear in the taxonomy are clear (no ambiguity).Does the scale purport to measure “The clarity of terms”?
ComprehensivenessFor the case you reviewed, the taxonomy provides sufficient knowledge in the domain.Does the scale purport to measure “The comprehensiveness of the taxonomy in a certain domain”?
AccuracyThe information the taxonomy provides is accurate.Does the scale purport to measure “The accuracy of information”?
SpecificityThe taxonomy satisfies your needs when you use it to categorize the case you are reviewing.Does the scale purport to measure “Whether the taxonomy specifies agent’s specific requirements”?
SatisfactionPlease rate the overall satisfaction based on your experience of using the taxonomy.Does the scale purport to measure “The overall satisfaction to the taxonomy”?
Educational valuePlease rate the education value of the case you reviewed.Does the scale purport to measure “The educational value of the case”?

Developing a Detailed Ontology

A successful concept ontology provides an intrinsic infrastructure of patient safety knowledge, thus paves the way for developing a complete ontology. We performed a set of tasks to populate selected ontology classes with instances from real-world patient safety reports. These reports (n = 2,919) were obtained from a University Hospital in the US. The resulting ontology includes instances for classes that associate with two types of patient safety incidents: ‘patient fall’ (n = 346) and ‘equipment and device’ (n = 170). We focused on these two types of incidents in the starting stage for two reasons. Firstly, patient fall usually leads to significant morbidity and mortality in US hospitals. Secondly, during our review of the reports, information describing patient fall and equipment and devices is well documented in narratives and thus can be easily modeled by an ontological representation. For example, in a segment of the reports, ‘Pt was noted to be sitting on the side of the bed as he had done many times before without any difficulty or c/o. Pt was found on the floor next to his bed on his back and yelling for help.’, a subject-predicate-object triple can be determined as ‘Pt-sit-bed’. The populating process involves the extraction of terms from the reports into corresponding classes in the ontology. Two domain experts (SP and QM) completed the ontology population by following these procedures: (1) Each expert is assigned to a set of randomly selected reports and the selected classes of ‘patient fall’ and ‘equipment and devices’; (2) Each expert reviews the reports and annotates terms from the text to corresponding classes; (3) Each expert cross validates each other one’s work; (4) The populating is considered complete after a few iterations when no more revision remains needed.

Results
The Ontology
Ontology Structure

With minor adjustments, we retained to the largest extent the top-level classes in the ICPS, which are incident type, patient characteristics, incident characteristics, detection, mitigating factors, patient outcomes, organizational outcomes, ameliorating actions, actions taken to reduce risk, and contributing factors/hazards. ‘Process’, which used to be under ‘Incident type’‘Clinical administration’, was defined as a top-level class since it does not fit in any place under any top-level classes. A number of classes were broken down into several newly defined subclasses to better fit in the ontology. For example, ‘Detection’ was replaced by several new classes (i.e. ‘People’, ‘Assessment’, etc.) to accurately describe how the incident was detected. Some other changes worth mentioning are the relocation of ‘Fall’, ‘Pressure ulcer’, and ‘Venous thromboembolism’ since they were not explicitly documented in the ICPS but are significant in clinical cases. Adjustments were also made to the classes extracted from the Common Formats. For example, ‘Surgery’ and ‘Anesthesia’ are defined as top-level classes in the Common Formats. However, they were defined as subclasses of the ‘Process’ in our ontology. Adjustments as such help retain both the original information and the clarity of the ontological structure. Figure 1 provides a close view of these adjustments by showing the ontology structure in Protégé screenshots.

Figure 1

Protégé screenshots of partial ontology hierarchies. (a) Overall ontology structure. (b) Ontology structure of the classes associated with ‘fall’ incidents. (c) Ontology structure of the classes associated with ‘equipment and device’ incidents.

The current version of ontology has 71 classes, in which 24 classes have equivalent classes from selected existing ontologies from BioPortal. All these ontologies are in the fields of medical incidents or patient safety. In these ontologies, the ICPS ontology is derived from WHO’s conceptual model of ICPS. The Adverse Event Ontology (AEO) encodes terminologies and representations in the scope of adverse events and medical interventions (He et al., 2011). The use of existing ontological terms can reduce repetitive work on future ontology expansion within similar domains. Table 3 shows a summary of the ontological terms.

Statistics of ontology specific terms and imported terms.

Ontology namesClassesObject propertiesTotal
Patient Safety Ontology47350
International Classification for Patient Safety (ICPS)22022
Adverse Event Ontology (AEO)224
Total71576

Examples of Ontology Terms

A simple example of medical incidents can be determined by linking a number of terms through object properties. Figure 2 demonstrates two examples in which a ‘patient fall’ incident can be determined. In the examples, a ‘fall’ incident can be inferred by defining semantic rules, in which classes (i.e. Person, Patient, Activity, PatientActivity, PatientOutcome, IncidentType, and Fall), object properties (i.e. involvesActivity, hasParticipant, and hasOutcome), and other predefined properties in the ontology were employed in the reasoning process. By defining more terms, object properties, and rules, we can infer a greater number of semantic evidence.

Figure 2

An example of inferred terms. (a) Two rules that infer a ‘patient fall’ incident. (b) Three inferences suggested by HermiT 1.3.8 in Protégé. ‘Patientfall’ is inferred as an instance of ‘Fall’. (c) A diagram of designed logical path applied in the example.

Evaluation Results

The ontology passed consistency checking through HermiT 1.3.8 (Shearer et al., 2008). This procedure validated the ontology from a machine-based perspective. In addition, we included human-centered evaluation to ensure the ontology is valid in clinical practice. We used a real-world patient safety report (http://www.webmm.ahrq.gov/case.aspx?caseID=337) in the Morbidity and Mortality Rounds on the Web (WebM&M) for the pre-assessment. Two domain experts (JW and YG) participated in the pre-assessment. See Table 4 for the results. We used a Content Validity Index (CVI) method to calculate the optimized content validity (Polit & Beck, 2006). The CVI for each item and overall are shown in Table 5.

Calculation of inter-rater reliability for the evaluation instrument.

Item 1Item 2Item 3Item 4Item 5Item 6Item 7Item 8
Rater 1(WJ)44445445
Rater 2 (YG)55555555
Number in agreement22222222
Total agreement in percentile100%

Note. The eight items are shown in the Table 2, ‘corresponding questions in the pre-assessment’ column. The numbers represent 5-point scale, i.e., 1 = strongly disagree; 2 = disagree; 3 = neither agree nor disagree; 4 = agree; 5 = strongly agree. We count it an agreement when two raters select the same scale or neighbor scales for a given item.

Two raters rating on a 4-point scale for content validity.

Item 1Item 2Item 3Item 4Item 5Item 6Item 7Item 8Proportion
Rater 1 (WJ)XXXXXXXX1.00
Rater 2 (YG)XXXXXXXX1.00
Number in agreement22222222Mean I-CVI = 1.00 Mean rater proportion
Item CVI1.001.001.001.001.001.001.001.00= 1.00

Note. The Content Validity Index (CVI) is calculated as the number of all raters selecting a scale of either 3 or 4, where 1 = not relevant, 2 = somewhat relevant, 3 = quite relevant, 4 = highly relevant. An X stands for a CVI counted. I-CVI stands for the CVI for individual item.

Discussion

Ontologies are important tools to structure biomedical domains (Bodenreider, 2008). In the last decade, we have seen a grand challenge for translational research in biomedical domains with increase in both volume and complexity of data. Interpreting these data naturally requires domain knowledge that is usually given by clinical experts. When it comes to a timely response to rapidly growing medical incident data, a machine-readable fashion for such domain knowledge is integral. The broad use of biomedical ontologies has resulted in a community of resources that can be shared within the domain. Ontology communities as such enable easy data integration and incorporation of individual ontologies with specific text mining applications.

We highlighted a role of ontological knowledge representation in PSRS. This role needs to be interpreted within the context of the existing PSRS’ limitations. Data quality has become a focal issue for performing downstream analyses. Patient safety information exists in various types of medical records, including structured and unstructured data (free text) where a great number of information is reported in free text. While this type of reporting can largely retain invaluable information from natural language, it poses a crucial problem of processing free text. When it comes to the structured data, data quality is usually influenced by a pre-defined categorization (Gong, 2011). In many PSRSes that use a hybrid of both unstructured and structured data entry, conflicts were identified between structured data and free text (Holzmueller et al., 2005; Pronovost et al., 2008). Our study demonstrates a feasible approach to incorporate both structured and unstructured data while creating a machine-readable fashion for data representation. Along with this approach, future efforts should include mapping strategies to merge relational data that are used for representing structured data with ontologies (Cullot, Ghawi, & Yétongnon, 2007; Xu, Zhang, & Dong, 2006).

Text data pose technical challenges to computerized data processing and information retrieval. In the patient safety reporting, aggregate analyses are as important as reviewing a handful of cases since it can effectively alarm and trend recurring incidents (Leape et al., 2005). However, performing a manual review on massive reports is costly and unpractical. It may also bring unacceptable deviations to the outcomes (Itoh & Andersen, 2004). Mature NLP solutions and text mining methods are necessary but require a well-developed knowledge base for support. Our study holds promises to address this problem with two advantages: (1) The patient safety ontology serves as a domain knowledge base that can support text mining tasks such as relation extraction and NER. Moreover, a well-designed ontology by itself also provides semantic reasoning functions that can infer new knowledge and support RCA in part (Allemang & Hendler, 2011). (2) The patient safety ontology accelerates information exchange through an unified language system where an uniformed language system provides not only a controlled taxonomy but also the capacity of data integration and knowledge discovery (Alexander, 2006; Bodenreider, 2008).

Our study also enables a number of demanding functionalities in the PSRS. Firstly, classification of patient safety events is critical yet underdeveloped in the US and many other countries (Elliott et al., 2014; Leape et al., 2005). The ever-increasing volume and complexity of patient safety events call for a uniformed classification system. We envision that an ontology-based multi-label classifier will improve the performance of patient safety classification. The patient safety report is a typical multi-label classification problem in which a given document can be assigned to multiple classes in a hierarchical structure. Therefore, the classification task is denoted as hierarchical multi-label classification (Tsoumakas & Katakis, 2006). The patient safety ontology will define possible classes for the documents and thus enable multi-label learning. Secondly, discovering relatedness between incidents can help identify the contributing factors and understand if repetitive errors worth a broader attention. Semantic similarity metrics have been successfully applied to the Gene Ontology (Lorit et al., 2003; Wolting, McGlade, & Tritchler, 2006). For patient safety ontology, we determine the similarity between two incidents by measuring the distance between concepts/terms annotated from the incident reports by the ontology. In the proposed PSRS, each report is mapped on to the ontology, therefore a set of ontological features such as classes and object properties are assigned to the report. The calculation of the similarity between any of two reports becomes the calculation between the two sets of features associated with the reports. The distances between these features (i.e. classes) are calculated according to their connections defined by the ontology. For example, the distance between two classes is determined by their position in the hierarchies, as well as their hypernym and/or children, in the hierarchies (Garla & Brandt, 2012). Consequently, front end users (i.e. risk managers in the hospitals) are returned with a list of similarity scores when they query the similarity between two or more incidents.

The present work should be discussed in the context of its challenges and limitations. We demonstrated initial steps for improving patient safety reporting through the use of informatics. Constructing patient safety ontology by aligning with different information sources from different perspectives or standards is challenging and has been recognized as a long-term endeavor. With regard to the generalizability of our work, it is worth noting that we are using a small sample of patient safety reports for ontology development and evaluation in this starting stage. The small sample size limits a comprehensive validation from many perspectives in the medical domain. The use of different data source will help discover more knowledge towards a comprehensive ontology. It could show the benefits of our approach if we further expand the ontology alone with the methods we proposed. In conclusion, our future direction will focus on the follow-up ontology development and ontology-based applications using real-world medical data.

Figure 1

Protégé screenshots of partial ontology hierarchies. (a) Overall ontology structure. (b) Ontology structure of the classes associated with ‘fall’ incidents. (c) Ontology structure of the classes associated with ‘equipment and device’ incidents.
Protégé screenshots of partial ontology hierarchies. (a) Overall ontology structure. (b) Ontology structure of the classes associated with ‘fall’ incidents. (c) Ontology structure of the classes associated with ‘equipment and device’ incidents.

Figure 2

An example of inferred terms. (a) Two rules that infer a ‘patient fall’ incident. (b) Three inferences suggested by HermiT 1.3.8 in Protégé. ‘Patientfall’ is inferred as an instance of ‘Fall’. (c) A diagram of designed logical path applied in the example.
An example of inferred terms. (a) Two rules that infer a ‘patient fall’ incident. (b) Three inferences suggested by HermiT 1.3.8 in Protégé. ‘Patientfall’ is inferred as an instance of ‘Fall’. (c) A diagram of designed logical path applied in the example.

Calculation of inter-rater reliability for the evaluation instrument.

Item 1Item 2Item 3Item 4Item 5Item 6Item 7Item 8
Rater 1(WJ)44445445
Rater 2 (YG)55555555
Number in agreement22222222
Total agreement in percentile100%

Workflow chart of ontology construction.

ProjectTaskMaterialsMethod/toolOutcome
ConceptontologyKnowledge acquisition Ontology implementationICPS and the Common Formats Semantic knowledge organized in hierarchiesExpert analysis Expert review Ontology engineeringSemantic knowledge organized in hierarchies A concept ontology with a hierarchical structure of patient safety knowledge
EvaluationHuman evaluationHierarchical classes from the concept ontology Real-world reports from Web M&MSurvey instrument StatisticsQuality indicators of the classification by domain experts
Computational evaluationConcept ontology in OWLStatistical analysis Consistency checkingQuantitative indicators of the ontology
Detailed ontologyAnnotationConcept ontology Dataset from a university hospitalExpert annotationA detailed ontology with enriched terms, relations, and other ontological specifications

A sample set of questions demonstrates the design of the survey instrument and the pre-assessment for validating the survey instrument.

DimensionsQuestions in the survey instrumentQuestions in the pre-assessment
CorrectnessFor the case you reviewed, the terms used in the taxonomy are well-formed and the words are well-arranged.Does the scale purport to measure “The correctness of syntax”?
MeaningfulnessFor the case you reviewed, the terms used in the taxonomy can represent the concepts in the real-world setting.Does the scale purport to measure “The meaningfulness of terms”?
ClarityFor the case you reviewed, the terms that appear in the taxonomy are clear (no ambiguity).Does the scale purport to measure “The clarity of terms”?
ComprehensivenessFor the case you reviewed, the taxonomy provides sufficient knowledge in the domain.Does the scale purport to measure “The comprehensiveness of the taxonomy in a certain domain”?
AccuracyThe information the taxonomy provides is accurate.Does the scale purport to measure “The accuracy of information”?
SpecificityThe taxonomy satisfies your needs when you use it to categorize the case you are reviewing.Does the scale purport to measure “Whether the taxonomy specifies agent’s specific requirements”?
SatisfactionPlease rate the overall satisfaction based on your experience of using the taxonomy.Does the scale purport to measure “The overall satisfaction to the taxonomy”?
Educational valuePlease rate the education value of the case you reviewed.Does the scale purport to measure “The educational value of the case”?

Statistics of ontology specific terms and imported terms.

Ontology namesClassesObject propertiesTotal
Patient Safety Ontology47350
International Classification for Patient Safety (ICPS)22022
Adverse Event Ontology (AEO)224
Total71576

Two raters rating on a 4-point scale for content validity.

Item 1Item 2Item 3Item 4Item 5Item 6Item 7Item 8Proportion
Rater 1 (WJ)XXXXXXXX1.00
Rater 2 (YG)XXXXXXXX1.00
Number in agreement22222222Mean I-CVI = 1.00 Mean rater proportion
Item CVI1.001.001.001.001.001.001.001.00= 1.00

Alexander, C. Y. (2006). Methods in biomedical ontology. Journal of Biomedical Informatics, 39(3), 252–266.AlexanderC. Y.2006Methods in biomedical ontologyJournal of Biomedical Informatics39325226610.1016/j.jbi.2005.11.00616387553Search in Google Scholar

Allemang, D., & Hendler, J. (2011). Semantic Web for the working ontologist: Effective modeling in RDFS and OWL. Portland, USA: Ringgold Inc.AllemangD.HendlerJ.2011Semantic Web for the working ontologist: Effective modeling in RDFS and OWLPortland, USARinggold IncSearch in Google Scholar

Ananiadou, S., & McNaught, J. (2006). Text mining for biology and biomedicine. London, UK: Artech House.AnaniadouS.McNaughtJ.2006Text mining for biology and biomedicineLondon, UKArtech HouseSearch in Google Scholar

Andronis, C., Sharma, A., Virvilis, V., Deftereos, S., & Persidis, A. (2011). Literature mining, ontologies and information visualization for drug repurposing. Briefings in Bioinformatics, 12(4), 357–368.AndronisC.SharmaA.VirvilisV.DeftereosS.PersidisA.2011Literature mining, ontologies and information visualization for drug repurposingBriefings in Bioinformatics12435736810.1093/bib/bbr00521712342Search in Google Scholar

Baader, F. (2003). The description logic handbook: Theory, implementation, and applications. Cambridge, UK: Cambridge University Press.BaaderF.2003The description logic handbook: Theory, implementation, and applicationsCambridge, UKCambridge University PressSearch in Google Scholar

Baker, G. R., Norton, P. G., Flintoft, V., Blais, R., Brown, A., & Cox, J. (2004). The Canadian adverse events study: The incidence of adverse events among hospital patients in Canada. Canadian Medical Association Journal, 170(11), 1678–1686.BakerG. R.NortonP. G.FlintoftV.BlaisR.BrownA.CoxJ.2004The Canadian adverse events study: The incidence of adverse events among hospital patients in CanadaCanadian Medical Association Journal170111678168610.1503/cmaj.104049840850815159366Search in Google Scholar

Bodenreider, O. (2004). The unified medical language system (UMLS): Integrating biomedical terminology. Nucleic Acids Research, 32(suppl 1), D267–D270.BodenreiderO.2004The unified medical language system (UMLS): Integrating biomedical terminologyNucleic Acids Research321D267267D10.1093/nar/gkh06130879514681409Search in Google Scholar

Bodenreider, O. (2008). Biomedical ontologies in action: Role in knowledge management, data integration and decision support. Yearbook of Medical Informatics, 67.BodenreiderO.2008Biomedical ontologies in action: Role in knowledge management, data integration and decision supportYearbook of Medical Informatics6710.1055/s-0038-1638585Search in Google Scholar

Braithwaite, J., Westbrook, M. T., Travaglia, J. F., & Hughes, C. (2010). Cultural and associated enablers of, and barriers to, adverse incident reporting. Quality and Safety in Health Care, 19(3), 229–233.BraithwaiteJ.WestbrookM. T.TravagliaJ. F.HughesC.2010Cultural and associated enablers of, and barriers to, adverse incident reportingQuality and Safety in Health Care19322923310.1136/qshc.2008.03021320534716Search in Google Scholar

Braithwaite, J., Westbrook, M., & Travaglia, J. (2008). Attitudes toward the large-scale implementation of an incident reporting system. International Journal for Quality in Health Care, 20(3), 184–191.BraithwaiteJ.WestbrookM.TravagliaJ.2008Attitudes toward the large-scale implementation of an incident reporting systemInternational Journal for Quality in Health Care20318419110.1093/intqhc/mzn00418337286Search in Google Scholar

Brank, J., Grobelnik, M., & Mladenić, D. (2005). A survey of ontology evaluation techniques. In Proceedings of the Conference on Data Mining and Data Warehouses. Copenhagen, Denmark.BrankJ.GrobelnikM.MladenićD.2005A survey of ontology evaluation techniquesIn Proceedings of the Conference on Data Mining and Data WarehousesCopenhagen, DenmarkSearch in Google Scholar

Brennan, T. A., Leape, L. L., Laird, N. M., Hebert, L., Localio, A. R., Lawthers, A. G., Hiatt, H. H. (1991). Incidence of adverse events and negligence in hospitalized patients: Results of the Harvard medical practice study I. New England Journal of Medicine, 324(6), 370–376.BrennanT. A.LeapeL. L.LairdN. M.HebertL.LocalioA. R.LawthersA. G.HiattH. H.1991Incidence of adverse events and negligence in hospitalized patients: Results of the Harvard medical practice study INew England Journal of Medicine324637037610.1056/NEJM1991020732406041987460Search in Google Scholar

Brixey, J., Johnson, T. R., & Zhang, J. (2002). Evaluating a medical error taxonomy. In Proceedings of the AMIA Symposium, 71–75.BrixeyJ.JohnsonT. R.ZhangJ.2002Evaluating a medical error taxonomyIn Proceedings of the AMIA Symposium7175Search in Google Scholar

Burton-Jones, A., Storey, V. C., Sugumaran, V., & Ahluwalia, P. (2005). A semiotic metrics suite for assessing the quality of ontologies. Data & Knowledge Engineering, 55(1), 84–102.Burton-JonesA.StoreyV. C.SugumaranV.AhluwaliaP.2005A semiotic metrics suite for assessing the quality of ontologiesData & Knowledge Engineering5518410210.1016/j.datak.2004.11.010Search in Google Scholar

Chang, A., Schyve, P. M., Croteau, R. J., O’Leary, D. S., & Loeb, J. M. (2005). The JCAHO patient safety event taxonomy: A standardized terminology and classification schema for near misses and adverse events. International Journal for Quality in Health Care, 17(2), 95–105.ChangA.SchyveP. M.CroteauR. J.O’LearyD. S.LoebJ. M.2005The JCAHO patient safety event taxonomy: A standardized terminology and classification schema for near misses and adverse eventsInternational Journal for Quality in Health Care1729510510.1093/intqhc/mzi02115723817Search in Google Scholar

Cochrane, D., Taylor, A., Miller, G., Hait, V., Matsui, I., Bharadwaj, M., & Devine, P. (2009). Establishing a provincial patient safety and learning system: Pilot project results and lessons learned. Healthc Qarterly, 12, 147–153.CochraneD.TaylorA.MillerG.HaitV.MatsuiI.BharadwajM.DevineP.2009Establishing a provincial patient safety and learning system: Pilot project results and lessons learnedHealthc Qarterly1214715310.12927/hcq.2009.2071719667793Search in Google Scholar

Cullot, N., Ghawi, R., & Yétongnon, K. (2007). DB2OWL: A tool for automatic database-to-ontology mapping. In Proceedings of the Fifteenth Italian Symposium on Advanced Database Systems, (pp. 17–20). Roma, Italy: KRDB Centre, Faculty of Computer Science, Free University of Bozen-Bolzano.CullotN.GhawiR.YétongnonK.2007DB2OWL: A tool for automatic database-to-ontology mappingIn Proceedings of the Fifteenth Italian Symposium on Advanced Database Systems1720Roma, ItalyKRDB Centre, Faculty of Computer Science, Free University of Bozen-BolzanoSearch in Google Scholar

Dovey, S. M., Meyers, D. S., Phillips, R. L., Green, L. A., Fryer, G. E., Galliher, J. M., … Grob, P. (2002). A preliminary taxonomy of medical errors in family practice. Quality & Safety in Health Care. 11(3), 233–238.DoveyS. M.MeyersD. S.PhillipsR. L.GreenL. A.FryerG. E.GalliherJ. M.GrobP.2002A preliminary taxonomy of medical errors in family practiceQuality & Safety in Health Care11323323810.1136/qhc.11.3.233174362612486987Search in Google Scholar

Elliott, P., Martin, D., & Neville, D. (2014). Electronic clinical safety reporting system: A benefits evaluation. JMIR Medical Informatics, 2(1), e12.ElliottP.MartinD.NevilleD.2014Electronic clinical safety reporting system: A benefits evaluationJMIR Medical Informatics21e1210.2196/medinform.3316428808325600569Search in Google Scholar

Erickson, S. M., Wolcott, J., Corrigan, J. M., Aspden, P. (2003). Patient safety: Achieving a new standard for care. Washington, USA: National Academies Press.EricksonS. M.WolcottJ.CorriganJ. M.AspdenP.2003Patient safety: Achieving a new standard for careWashington, USANational Academies PressSearch in Google Scholar

Fleiss, L., Levin, B., & Paik, M. C. (1981). The measurement of interrater agreement. In In Fleiss, J.L. (Ed). Statistical Methods for Rates and Proportions (2nd ed). 280–285. New York, NY: John Wiley & Sons.FleissL.LevinB.PaikM. C.1981The measurement of interrater agreementIn FleissJ.L.Statistical Methods for Rates and Proportions2nd280285New York, NYJohn Wiley & SonsSearch in Google Scholar

Frankel, A., Gandhi, T. K., & Bates, D. W. (2003). Improving patient safety across a large integrated health care delivery system. International Journal for Quality in Health Care, 15, i31–i40.FrankelA.GandhiT. K.BatesD. W.2003Improving patient safety across a large integrated health care delivery systemInternational Journal for Quality in Health Care15i31i4010.1093/intqhc/mzg07514660521Search in Google Scholar

Garla, V. N., & Brandt, C. (2012). Ontology-guided feature engineering for clinical text classification. Journal of Biomedical Informatics, 45(5), 992–998.GarlaV. N.BrandtC.2012Ontology-guided feature engineering for clinical text classificationJournal of Biomedical Informatics45599299810.1016/j.jbi.2012.04.010343143822580178Search in Google Scholar

Gong, Y. (2011). Data consistency in a voluntary medical incident reporting system. Journal of Medical Systems, 35(4), 609–615.GongY.2011Data consistency in a voluntary medical incident reporting systemJournal of Medical Systems35460961510.1007/s10916-009-9398-y20703528Search in Google Scholar

Gottgtroy, P., Kasabov, N., & MacDonell, S. (2004). An ontology driven approach for knowledge discovery in biomedicine. In Proceedings of the 8th Pacific Rim International Conference on Artificial Intelligence (PRICAI) (pp. 53–67). Auckland, New Zealand: Springer-Verlag.GottgtroyP.KasabovN.MacDonellS.2004An ontology driven approach for knowledge discovery in biomedicineIn Proceedings of the 8th Pacific Rim International Conference on Artificial Intelligence (PRICAI)5367Auckland, New ZealandSpringer-VerlagSearch in Google Scholar

Greenes, R. A. (Ed.). (2014). Clinical decision support: The road ahead. Boston, USA: Academic Press.GreenesR. A.2014Clinical decision support: The road aheadBoston, USAAcademic PressSearch in Google Scholar

He, Y., Xiang, Z., Sarntivijai, S., Toldo, L., & Ceusters, W. (2011). AEO: A realism-based biomedical ontology for the representation of adverse events. A diverse event workshop, ICBO 2011. Retrieved from http://icbo.buffalo.edu/2011/workshop/adverse-events/docs/talks/session1/HeAEICBO2011.pdf.HeY.XiangZ.SarntivijaiS.ToldoL.CeustersW.2011AEO: A realism-based biomedical ontology for the representation of adverse eventsA diverse event workshop, ICBO 2011. Retrieved fromhttp://icbo.buffalo.edu/2011/workshop/adverse-events/docs/talks/session1/HeAEICBO2011.pdfSearch in Google Scholar

Holzmueller, C. G., Pronovost, P. J., Dickman, F., Thompson, D. A., Wu, A. W., Lubomski, L. H., … & Laura L. (2005). Creating the web-based intensive care unit safety reporting system. Journal of the American Medical Informatics Association, 12(2), 130–139.HolzmuellerC. G.PronovostP. J.DickmanF.ThompsonD. A.WuA. W.LubomskiL. H.LauraL.2005Creating the web-based intensive care unit safety reporting systemJournal of the American Medical Informatics Association12213013910.1197/jamia.M140855154515561794Search in Google Scholar

Hsieh, H.F., & Shannon, S. E. (2005). Three approaches to qualitative content analysis. Qualitative Health Research, 15(9), 1277–1288.HsiehH.F.ShannonS. E.2005Three approaches to qualitative content analysisQualitative Health Research1591277128810.1177/104973230527668716204405Search in Google Scholar

Hua, L., Wang, S., & Gong, Y. (2014). Text prediction on structured data entry in healthcare: A two-group randomized usability study measuring the prediction impact on user performance. Applied Clinical Informatics, 5(1), 249–263.HuaL.WangS.GongY.2014Text prediction on structured data entry in healthcare: A two-group randomized usability study measuring the prediction impact on user performanceApplied Clinical Informatics5124926310.4338/ACI-2013-11-RA-0095397425924734137Search in Google Scholar

Itoh, K., & Andersen, H. B. (2004). Analysing medical incident reports by use of a human error taxonomy. In Probabilistic Safety Assessment and Management (pp. 2714–2719). San Juan, Puerto Rico.ItohK.AndersenH. B.2004Analysing medical incident reports by use of a human error taxonomyIn Probabilistic Safety Assessment and Management27142719San JuanPuerto Rico10.1007/978-0-85729-410-4_435Search in Google Scholar

Keistinen, T., & Kinnunen, M. (2007). Increased patient safety with an Internet-based reporting system. World Hospitals and Health Services: The Official Journal of the International Hospital Federation, 44(2), 37–39.KeistinenT.KinnunenM.2007Increased patient safety with an Internet-based reporting systemWorld Hospitals and Health Services: The Official Journal of the International Hospital Federation4423739Search in Google Scholar

Kohn, L. T., Corrigan, J., & Donaldson, M. S. (2000). To err is human: Building a safer health system. Washington, D.C: National Academy Press.KohnL. T.CorriganJ.DonaldsonM. S.2000To err is human: Building a safer health systemWashington, D.CNational Academy PressSearch in Google Scholar

Kumar, A., Yip, L., Smith, B., & Grenon, P. Bridging the Gap between Medical and Bioinformatics Using Formal Ontological Principles. Computers in Biology and Medicine.(submitted).KumarA.YipL.SmithB.GrenonP.Bridging the Gap between Medical and Bioinformatics Using Formal Ontological Principles. Computers in Biology and Medicine.(submitted)Search in Google Scholar

Kuo, Y.H., Lee, T.T., Mills, M. E., & Lin, K.C. (2012). The evaluation of a web-based incident reporting system. Computers Informatics Nursing, 30(7), 386–394.KuoY.H.LeeT.T.MillsM. E.LinK.C.2012The evaluation of a web-based incident reporting systemComputers Informatics Nursing30738639410.1097/NXN.0b013e31825106ea22433431Search in Google Scholar

Lamont, T., Scarpello, J., & others. (2009). National patient safety agency: Combining stories with statistics to minimise harm. BMJ, 339, b4489.LamontT.ScarpelloJ.2009National patient safety agency: Combining stories with statistics to minimise harmBMJ339b448910.1136/bmj.b448919926688Search in Google Scholar

Larizgoitia, I., Bouesseau, M. C., & Kelley, E. (2013). WHO efforts to promote reporting of adverse events and global learning. Journal of Public Health Research, 2(3).LarizgoitiaI.BouesseauM. C.KelleyE.2013WHO efforts to promote reporting of adverse events and global learningJournal of Public Health Research2310.4081/jphr.2013.e29414774825170500Search in Google Scholar

Leape, L.L. & Abookire, S.A. (2005). Guidelines for Adverse Events Reporting and Learning Systems. Geneva, 2005, World Health Organization.LeapeL.L.AbookireS.A.2005Guidelines for Adverse Events Reporting and Learning Systems. Geneva20051World Health OrganizationSearch in Google Scholar

Levtzion K. O., Alcalai, H., Orav, E. J., Graydon-Baker, E., Keohane, C., Bates, D. W., & Frankel, A. S. (2009). Evaluation of the contributions of an electronic web-based reporting system: Enabling action. Journal of Patient Safety, 5(1), 9–15.LevtzionK. O.AlcalaiH.OravE. J.Graydon-BakerE.KeohaneC.BatesD. W.FrankelA. S.2009Evaluation of the contributions of an electronic web-based reporting system: Enabling actionJournal of Patient Safety5191510.1097/PTS.0b013e318198dc8d19920433Search in Google Scholar

Lorit, P. W., Stevens, R. D., Brass, A., & Goble, C. A. (2003). Semantic similarity measures as tools for exploring the gene ontology. In Proceedings of the 8th Pacific Rim International Conference on Artificial Intelligence (PRICAI) (pp. 53–67). Auckland, New Zealand: Springer-Verlag.LoritP. W.StevensR. D.BrassA.GobleC. A.2003Semantic similarity measures as tools for exploring the gene ontologyIn Proceedings of the 8th Pacific Rim International Conference on Artificial Intelligence (PRICAI)5367Auckland, New ZealandSpringer-VerlagSearch in Google Scholar

Lynn, M. R. (1986). Determination and quantification of content validity. Nursing Research, 35(6), 382–386.LynnM. R.1986Determination and quantification of content validityNursing Research35638238610.1097/00006199-198611000-00017Search in Google Scholar

Maynard, D., Li, Y., & Peters, W. (2008). NLP techniques for term extraction and ontology population. In Proceeding of the 2008 conference on Ontology Learning and Population: Bridging the Gap between Text and Knowledge (pp. 107–127). IOS Press Amsterdam, The Netherlands.MaynardD.LiY.PetersW.2008NLP techniques for term extraction and ontology populationIn Proceeding of the 2008 conference on Ontology Learning and Population: Bridging the Gap between Text and Knowledge107127IOS Press Amsterdam, The NetherlandsSearch in Google Scholar

McGuinness, D. L., Van Harmelen, F., & others. (2004). OWL web ontology language overview. W3C Recommendation, 10(10), 2004.McGuinnessD. L.Van HarmelenF.others2004OWL web ontology language overviewW3C Recommendation10102004Search in Google Scholar

Mekhjian, H. S., Bentley, T. D., Ahmad, A., & Marsh, G. (2004). Development of a web-based event reporting system in an academic environment. Journal of the American Medical Informatics Association, 11(1), 11–18.MekhjianH. S.BentleyT. D.AhmadA.MarshG.2004Development of a web-based event reporting system in an academic environmentJournal of the American Medical Informatics Association111111810.1197/jamia.M134930545314527972Search in Google Scholar

Mukherjea, S. (2005). Information retrieval and knowledge discovery utilising a biomedical Semantic Web. Briefings in Bioinformatics, 6(3), 252–262.MukherjeaS.2005Information retrieval and knowledge discovery utilising a biomedical Semantic WebBriefings in Bioinformatics6325226210.1093/bib/6.3.25216212773Search in Google Scholar

Newman, T. B. (2003). The power of stories over statistics. BMJ: British Medical Journal, 327(7429), 1424.NewmanT. B.2003The power of stories over statisticsBMJ: British Medical Journal3277429142410.1136/bmj.327.7429.142430079114684635Search in Google Scholar

Polit, D. F., & Beck, C. T. (2006). The content validity index: Are you sure you know what’s being reported? critique and recommendations. Research in Nursing & Health, 31, 341–354.PolitD. F.BeckC. T.2006The content validity index: Are you sure you know what’s being reported? critique and recommendationsResearch in Nursing & Health3134135410.1002/nur.2014716977646Search in Google Scholar

Pope, C., Ziebland, S., & Mays, N. (2000). Qualitative research in health care: Analysing qualitative data. BMJ: British Medical Journal, 320(7227), 114.PopeC.ZieblandS.MaysN.2000Qualitative research in health care: Analysing qualitative dataBMJ: British Medical Journal320722711410.1136/bmj.320.7227.114111736810625273Search in Google Scholar

Pronovost, P. J., Morlock, L. L., Sexton, J. B., Miller, M. R., Holzmueller, C. G., Thompson, D. A., … Wu, A. W. (2008). Improving the Value of Patient Safety Reporting Systems. In Advances in Patient Safety: New Directions and Alternative Approaches. 1, 1–9.PronovostP. J.MorlockL. L.SextonJ. B.MillerM. R.HolzmuellerC. G.ThompsonD. A.WuA. W.2008Improving the Value of Patient Safety Reporting SystemsIn Advances in Patient Safety: New Directions and Alternative Approaches119Search in Google Scholar

Rodrigues, J. M., Kumar, A., Bousquet, C., & Trombert, B. (2007). Standards and biomedical terminologies: the CEN TC 251 and ISO TC 215 categorial structures. A step towards increased interoperability. Studies in Health Technology and Informatics, 136, 857–862.RodriguesJ. M.KumarA.BousquetC.TrombertB.2007Standards and biomedical terminologies: the CEN TC 251 and ISO TC 215 categorial structuresA step towards increased interoperability. Studies in Health Technology and Informatics136857862Search in Google Scholar

Rossi, M. A., Consorti, F., & Galeazzi, E. (1998). Standards to support development of terminological systems for healthcare telematics. Methods of Information in Medicine, 37(4–5), 551–563.RossiM. A.ConsortiF.GaleazziE.1998Standards to support development of terminological systems for healthcare telematicsMethods of Information in Medicine374–555156310.1055/s-0038-1634542Search in Google Scholar

Runciman, W., Hibbert, P., Thomson, R., Van Der Schaaf, T., Sherman, H., & Lewalle, P. (2009). Towards an international classification for patient safety: Key concepts and terms. International Journal for Quality in Health Care, 21(1), 18–26.RuncimanW.HibbertP.ThomsonR.Van Der SchaafT.ShermanH.LewalleP.2009Towards an international classification for patient safety: Key concepts and termsInternational Journal for Quality in Health Care211182610.1093/intqhc/mzn057263875519147597Search in Google Scholar

Shearer, R., Motik, B., & Horrocks, I. (2008). HermiT: A Highly-Efficient OWL Reasoner. 432, 91.ShearerR.MotikB.HorrocksI.2008HermiT: A Highly-Efficient OWL Reasoner43291Search in Google Scholar

Sherman, H., Castro, G., Fletcher, M., Hatlie, M., Hibbert, P., Jakob, R., … & Virtanen, M. (2009). Towards an international classification for patient safety: The conceptual framework. International Journal for Quality in Health Care, 21(1), 2–8.ShermanH.CastroG.FletcherM.HatlieM.HibbertP.JakobR. …VirtanenM.2009Towards an international classification for patient safety: The conceptual frameworkInternational Journal for Quality in Health Care2112810.1093/intqhc/mzn054263875319147595Search in Google Scholar

Smith, B., Ashburner, M., Rosse, C., Bard, J., Bug, W., Ceusters, W. (2007). The OBO Foundry: Coordinated evolution of ontologies to support biomedical data integration. Nature Biotechnology, 25(11), 1251–1255.SmithB.AshburnerM.RosseC.BardJ.BugW.CeustersW.2007The OBO Foundry: Coordinated evolution of ontologies to support biomedical data integrationNature Biotechnology25111251125510.1038/nbt1346281406117989687Search in Google Scholar

Souvignet, J., Bousquet, C., Lewalle, P., Trombert-Paviot, B., & Rodrigues, J. M. (2011). Modeling patient safety incidents knowledge with the categorial structure method. In AMIA Annual Symposium Proceedings (Vol. 2011, p. 1300). Bethesda, USA: American Medical Informatics Association.SouvignetJ.BousquetC.LewalleP.Trombert-PaviotB.RodriguesJ. M.2011Modeling patient safety incidents knowledge with the categorial structure methodIn AMIA Annual Symposium Proceedings20111300Bethesda, USAAmerican Medical Informatics AssociationSearch in Google Scholar

Souvignet, J., & Rodrigues, J.M. (2014). Toward a patient safety upper level ontology. Studies in Health Technology and Informatics, 210, 160–164.SouvignetJ.RodriguesJ.M.2014Toward a patient safety upper level ontologyStudies in Health Technology and Informatics210160164Search in Google Scholar

Spigelman, A. D., & Swan, J. (2005). Review of the Australian incident monitoring system. ANZ Journal of Surgery, 75(8), 657–661SpigelmanA. D.SwanJ.2005Review of the Australian incident monitoring systemANZ Journal of Surgery75865766110.1111/j.1445-2197.2005.03482.x16076327Search in Google Scholar

Steiner, J. F. (2005). The use of stories in clinical research and health policy. Jama, 294(22), 2901–2904.SteinerJ. F.2005The use of stories in clinical research and health policyJama294222901290410.1001/jama.294.22.290116352799Search in Google Scholar

Suresh, G., Horbar, J. D., Plsek, P., Gray, J., Edwards, W. H., Shiono, P. H., … & Goldmann, D. (2004). Voluntary anonymous reporting of medical errors for neonatal intensive care. Pediatrics, 113(6), 1609–1618.SureshG.HorbarJ. D.PlsekP.GrayJ.EdwardsW. H.ShionoP. H.GoldmannD.2004Voluntary anonymous reporting of medical errors for neonatal intensive carePediatrics11361609161810.1542/peds.113.6.160915173481Search in Google Scholar

Tepfers, A., Louie, H., & Drouillard, M. (2006). Developing an electronic incident report: experiences of a multi-site teaching hospital. Healthcare Quarterly, 10(2), 117–122.TepfersA.LouieH.DrouillardM.2006Developing an electronic incident report: experiences of a multi-site teaching hospitalHealthcare Quarterly102117122Search in Google Scholar

Tsoumakas, G., & Katakis, I. (2006). Multi-label classification: An overview. Dept. of Informatics, Aristotle University of Thessaloniki, Greece.TsoumakasG.KatakisI.2006Multi-label classification: An overviewDept. of Informatics, Aristotle University of Thessaloniki, GreeceSearch in Google Scholar

Tuttle, D., Holloway, R., Baird, T., Sheehan, B., & Skelton, W. K. (2004). Electronic reporting to improve patient safety. Quality and Safety in Health Care, 13(4), 281–286.TuttleD.HollowayR.BairdT.SheehanB.SkeltonW. K.2004Electronic reporting to improve patient safetyQuality and Safety in Health Care13428128610.1136/qshc.2003.009100Search in Google Scholar

Van Den Bos, J., Rustagi, K., Gray, T., Halford, M., Ziemkiewicz, E., & Shreve, J. (2011). The $17.1 billion problem: the annual cost of measurable medical errors. Health Affairs, 30(4), 596–603.Van Den BosJ.RustagiK.GrayT.HalfordM.ZiemkiewiczE.ShreveJ.2011The $17.1 billion problem: the annual cost of measurable medical errorsHealth Affairs30459660310.1377/hlthaff.2011.008421471478Search in Google Scholar

Vanderheyden, L. C., Northcott, H. C., Adair, C. E., McBrien-Morrison, C., Meadows, L. M., Norton, P., & Cowell, J. (2004). Reports of preventable medical errors from the Alberta Patient Safety Survey 2004. Healthcare Quarterly, 8, 107–114.VanderheydenL. C.NorthcottH. C.AdairC. E.McBrien-MorrisonC.MeadowsL. M.NortonP.CowellJ.2004Reports of preventable medical errors from the Alberta Patient Safety Survey 2004Healthcare Quarterly810711410.12927/hcq..1767416334082Search in Google Scholar

Wachter, R. M., Shojania, K. G., Minichiello, T., Flanders, S. A., & Hartman, E. E. (2005). AHRQ WebM&M - online medical error reporting and analysis. Advances in Patient Safety, 4, 211–221.WachterR. M.ShojaniaK. G.MinichielloT.FlandersS. A.HartmanE. E.2005AHRQ WebM&M - online medical error reporting and analysisAdvances in Patient Safety4211221Search in Google Scholar

Williams, S. K., & Osborn, S. S. (2006). The development of the national reporting and learning system in England and Wales, 2001–2005. Medical Journal of Australia, 184(10), S65.WilliamsS. K.OsbornS. S.2006The development of the national reporting and learning system in England and Wales, 2001–2005Medical Journal of Australia18410S6510.5694/j.1326-5377.2006.tb00366.x16719740Search in Google Scholar

Wolting, C., McGlade, C. J., & Tritchler, D. (2006). Cluster analysis of protein array results via similarity of Gene Ontology annotation. BMC Bioinformatics, 7(1), 338.WoltingC.McGladeC. J.TritchlerD.2006Cluster analysis of protein array results via similarity of Gene Ontology annotationBMC Bioinformatics7133810.1186/1471-2105-7-338153902416836750Search in Google Scholar

Woods, A., & Doan-Johnson, S. (2002). Executive summary: Toward a taxonomy of nursing practice errors. Nursing Management, 33(10), 45–48.WoodsA.Doan-JohnsonS.2002Executive summary: Toward a taxonomy of nursing practice errorsNursing Management3310454810.1097/00006247-200210000-0002012395067Search in Google Scholar

Woods, D. M., Johnson, J., Holl, J. L., Mehra, M., Thomas, E. J., Ogata, E. S., & Lannon, C. (2005). Anatomy of a patient safety event: A pediatric patient safety taxonomy. Quality & Safety in Health Care, 14(6), 422–427.WoodsD. M.JohnsonJ.HollJ. L.MehraM.ThomasE. J.OgataE. S.LannonC.2005Anatomy of a patient safety event: A pediatric patient safety taxonomyQuality & Safety in Health Care14642242710.1136/qshc.2004.013573174409816326788Search in Google Scholar

Xu, Z., Zhang, S., & Dong, Y. (2006). Mapping between relational database schema and OWL ontology for deep annotation. In Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence (pp. 548–552). HongKong, China.XuZ.ZhangS.DongY.2006Mapping between relational database schema and OWL ontology for deep annotationIn Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence548552HongKong, China10.1109/WI.2006.114Search in Google Scholar

Zhang, J., Patel, V. L., Johnson, T. R., & Shortliffe, E. H. (2004). A cognitive taxonomy of medical errors. Journal of Biomedical Informatics, 37(3), 193–204.ZhangJ.PatelV. L.JohnsonT. R.ShortliffeE. H.2004A cognitive taxonomy of medical errorsJournal of Biomedical Informatics37319320410.1016/j.jbi.2004.04.00415196483Search in Google Scholar

Recommended articles from Trend MD