1. bookVolume 112 (2019): Issue 2 (December 2019)
Journal Details
License
Format
Journal
First Published
30 Jun 2018
Publication timeframe
2 times per year
Languages
English
Copyright
© 2020 Sciendo

Palynology, microfacies and ostracods of the Permian–Triassic boundary interval in the Rosengarten/Catinaccio Massif (Southern Alps, Italy)

Published Online: 20 Nov 2019
Page range: 103 - 124
Received: 19 Nov 2018
Accepted: 06 Aug 2019
Journal Details
License
Format
Journal
First Published
30 Jun 2018
Publication timeframe
2 times per year
Languages
English
Copyright
© 2020 Sciendo

The Laurinswand section in the Rosengarten/Catinaccio Massif (Dolomites, Southern Alps, Italy) covers the Permian–Triassic boundary in a proximal marine setting. The section has been studied for palynology, ostracods and carbonate microfacies. Five microfacies types are defined for the carbonates of the Bellerophon Formation (Changhsingian) in this section. Ostracod assemblages from the upper Bellerophon Formation show a moderate to high diversity and mostly indicate normal marine conditions, with some samples from the upper Casera Razzo Member being dominated by eurytopic forms. The ostracod fauna follows transgressive-regressive trends with low diverse assemblages occurring in the regressive parts. These trends are also reflected in the microfacies and can be assigned to three sequences. Palynological assemblages are dominated by phytoclasts, which is typical for proximal marine environments. Sporomorphs are represented predominantly by bisaccate and asaccate pollen grains and are mostly minor components of the palynofacies. Other minor, but consistent components in the Bellerophon Formation are acritarchs, Reduviasporonites and unidentified possible algae or fungi. The latter are particularly abundant in samples with ostracod faunas indicating restricted conditions. The Werfen Formation (uppermost Permian to Lower Triassic) yielded quantitatively poor palynological assemblages, with one sample from the Tesero Member showing a notable increase in spores and spore tetrads. This is indicative of the so-called “spore spike”, a well-known signal from this interval. One sample from the overlying Mazzin Member demonstrated a high relative abundance of Reduviasporonites, which may be related to mass occurrences of this taxon in the Tesero Member at Tesero and at other localities near the Permian–Triassic boundary. Such a mass occurrence normally pre-dates the spore spike, whereas at the Laurinswand, the former post-dates the latter considerably.

Keywords

Afonin, S.A., Barinova, S.S., Krassilov, V.A., 2001. A bloom of Tympanicysta Balme (green algae of zygnematalean affinities) at the Permian–Triassic boundary. Geodiversitas, 23/4, 481–487.Search in Google Scholar

Algeo, T.J., Chen, Z.-Q., Bottjer, D.J., 2015. Global review of the Permian–Triassic mass extinction and subsequent recovery: Part II. Earth-Science Reviews, 149, 1–4. https://doi.org/10.1016/j.earscirev.2015.09.007Search in Google Scholar

Balme, B.E., 1995. Fossil in situ spores and pollen grains: an annotated catalogue. Review of Palaeobotany and Palynology, 87, 81–323. https://doi.org/10.1016/0034-6667(95)93235-XSearch in Google Scholar

Benca, J.P., Duijnstee, I.A.P., Looy, C.V., 2018. UV-B–induced forest sterility: Implications of ozone shield failure in Earth’s largest extinction. Science Advances, 4/2, e1700618. https://doi.org/10.1126/sciadv.1700618Search in Google Scholar

Benton, M.J., Newell, A.J., 2014. Impacts of global warming on Permo-Triassic terrestrial ecosystems. Gondwana Research, 25/4, 1308–1337. https://doi.org/10.1016/j.gr.2012.12.010Search in Google Scholar

Benton, M.J., Twitchett, R.J., 2003. How to kill (almost) all life: the end-Permian extinction event. Trends in Ecology & Evolution, 18/7, 358–365. https://doi.org/10.1016/S0169-5347(03)00093-4Search in Google Scholar

Benton, M.J., Tverdokhlebov, V.P., Surkov, M.V., 2004. Ecosystem remodelling among vertebrates at the Permian–Triassic boundary in Russia. Nature, 432, 97–100. https://doi.org/10.1038/nature02950Search in Google Scholar

Bercovici, A., Cui, Y., Forel, M.-B., Yu, J., Vajda, V., 2015. Terrestrial paleoenvironment characterization across the Permian–Triassic boundary in South China. Journal of Asian Earth Sciences, 98, 225–246. https://doi.org/10.1016/j.jseaes.2014.11.016Search in Google Scholar

Bercovici, A., Vajda, V., 2016. Terrestrial Permian – Triassic boundary sections in South China. Global and Planetary Change, 143, 31–33. https://doi.org/10.1016/j.gloplacha.2016.05.010Search in Google Scholar

Boschetti, F., 2010. Sedimentologische und Geochemische Untersuchung der Bellerophon- und Werfen-Formation im Raum Westliche Dolomiten. Unpublished Diploma Thesis, University of Innsbruck, Innsbruck, Austria, 78 pp.Search in Google Scholar

Brack, P., Kustatscher, E., 2013. Voltzia recubariensis from the uppermost Angolo Limestone of the Bagolino succession (Southern Alps of Eastern Lombardy, Italy). Geo. Alp, 10, 61–70.Search in Google Scholar

Brand, U., Posenato, R., Came, R., Affek, H., Angiolini, L., Azmy, K., Farabegoli, E., 2012. The end-Permian mass extinction: A rapid volcanic CO2 and CH4-climatic catastrophe. Chemical Geology, 322–323, 121–144. https://doi.org/10.1016/j.chemgeo.2012.06.015Search in Google Scholar

Brandner, R., Horacek, M., Keim, L., Scholger, R., 2009. The Pufels/Bulla road section: Deciphering environmental changes across the Permian-Triassic boundary to the Olenekian by integrated litho-, magneto- and isotope stratigraphy. A field trip guide. Geo.Alp, 6, 116–132.Search in Google Scholar

Broglio Loriga, C., Góczán, F., Haas, J., Lenner, K., Neri, C., Oravecz-Scheffer, A., Posenato, R., Szabo, I., Tóth-Makk, Á., 1990. The Lower Triassic sequences of the Dolomites (Italy) and Transdanubian mid-mountains (Hungary) and their correlation. Memorie di Scienze Geologiche, 42, 41–103.Search in Google Scholar

Broglio Loriga, C., Neri, C., Pasini, M., Posenato, R., 1988. Marine fossil assemblages from Upper Permian to lowermost Triassic in the Western Dolomites (Italy). Memorie della Società Geologica Italiana, 34, 5–44.Search in Google Scholar

Chen, Z.-Q., Algeo, T.J., Bottjer, D.J., 2014. Global review of the Permian–Triassic mass extinction and subsequent recovery: Part I. Earth-Science Reviews, 137, 1–5. https://doi.org/10.1016/j.earscirev.2014.05.007Search in Google Scholar

Cirilli, S., Pirini Radrizzani, C., Ponton, M., Radrizzani, S., 1998. Stratigraphical and palaeoenvironmental analysis of the Permian–Triassic transition in the Badia Valley (Southern Alps, Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 138, 85–113. https://doi.org/10.1016/S0031-0182(97)00123-5Search in Google Scholar

Clement-Westerhof, J.A., 1974. In situ pollen from gymnospermous cones from the Upper Permian of the Italian Alps — A preliminary account. Review of Palaeobotany and Palynology, 17, 63–73. https://doi.org/10.1016/0034-6667(74)90092-XSearch in Google Scholar

Clement-Westerhof, J.A., 1987. Aspects of Permian palaeobotany and palynology, VII. The Majonicaceae, a new family of Late Permian conifers. Review of Palaeobotany and Palynology, 52, 375–402. https://doi.org/10.1016/0034-6667(87)90066-2Search in Google Scholar

Crasquin, S., Perri, M.C., Nicora, A., De Wever, P., 2008. Ostracods across the Permian-Triassic boundary in Western Tethys: the Bulla parastratotype (Southern Alps, Italy). Rivista Italiana di Paleontologia e Stratigrafia, 114/2, 233–262.Search in Google Scholar

Cui, Y., Bercovici, A., Yu, J., Kump, L.R., Freeman, K.H., Su, S., Vajda, V., 2017. Carbon cycle perturbation expressed in terrestrial Permian–Triassic boundary sections in South China. Global and Planetary Change, 148, 272–285. https://doi.org/10.1016/j.gloplacha.2015.10.018Search in Google Scholar

Elsik, W.C., 1999. Reduviasporonites Wilson 1962: Synonymy of the fungal organism involved in the late Permian crisis. Palynology, 23/1, 37–41. https://doi.org/10.1080/01916122.1999.9989519Search in Google Scholar

Erwin, D.H., 1994. The Permo-Triassic extinction. Nature, 367, 231–236. https://doi.org/10.1038/367231a0Search in Google Scholar

Eshet, Y., Rampino, M.R., Visscher, H., 1995. Fungal event and palynological record of ecological crisis and recovery across the Permian-Triassic boundary. Geology, 23/11, 967–970.Search in Google Scholar

Farabegoli, E., Perri, M.C., Posenato, R., 2007. Environmental and biotic changes across the Permian–Triassic boundary in western Tethys: The Bulla parastratotype, Italy. Global and Planetary Change, 55, 109–135. https://doi.org/10.1016/j.gloplacha.2006.06.009Search in Google Scholar

Flügel, E., 2004. Microfacies of carbonate rocks: analysis, interpretation and application. Springer Verlag, Berlin, Heidelberg, 984 pp.Search in Google Scholar

Foster, W.J., Danise, S., Price, G.D., Twitchett, R.J., 2017. Subsequent biotic crises delayed marine recovery following the late Permian mass extinction event in northern Italy. PLOS ONE, 12/3, e0172321. https://doi.org/10.1371/journal.pone.0172321Search in Google Scholar

Foster, C.B., Stephenson, M.H., Marshall, C., Logan, G.A., Greenwood, P.F., 2002. A revision of Reduviasporonites Wilson 1962: Description, illustration, comparison and biological affinities. Palynology, 26/1, 35–58. https://doi.org/10.2113/0260035Search in Google Scholar

Grauvogel-Stamm, L., 1978. La Flore du Grès à Voltzia (Buntsandstein supérieur) des Vosges du Nord (France): Morphologie, Anatomie, Interprétations Phylogénique et Paléogéographique. Sciences Géologiques, Mémoire 50, Institut de Géologie, Strasbourg, France, 225 pp.Search in Google Scholar

Grenfell, H.R., 1995. Probable fossil zygnematacean algal spore genera. Review of Palaeobotany and Palynology, 84, 201–220. https://doi.org/10.1016/0034-6667(94)00134-6Search in Google Scholar

Groves, J.R., Rettori, R., Payne, J.L., Boyce, M.D., Altiner, D., 2007. End-Permian mass extinction of lagenide foraminifers in the Southern Alps (northern Italy). Journal of Palaeontology, 81/3, 415–434. https://doi.org/10.1666/05123.1Search in Google Scholar

Hermann, E., Hochuli, P.A., Bucher, H., Brühwiler, T., Hautmann, M., Ware, D., Roohi, G., 2011. Terrestrial ecosystems on North Gondwana following the end-Permian mass extinction. Gondwana Research, 20, 630–637. https://doi.org/10.1016/j.gr.2011.01.008Search in Google Scholar

Hochuli, P.A., 2016. Interpretation of “fungal spikes” in Permian-Triassic boundary sections. Global and Planetary Change, 144, 48–50. https://doi.org/10.1016/j.gloplacha.2016.05.002Search in Google Scholar

Hochuli, P.A., Hermann, E., Vigran, J.O., Bucher, H., Weissert, H., 2010. Rapid demise and recovery of plant ecosystems across the end-Permian extinction event. Global and Planetary Change, 74, 144–155. https://doi.org/10.1016/j.gloplacha.2010.10.004Search in Google Scholar

Hofmann, R., Goudemand, N., Wasmer, M., Bucher, H., Hautmann, M., 2011. New trace fossil evidence for an early recovery signal in the aftermath of the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 310, 216–226. https://doi.org/10.1016/j.palaeo.2011.07.014Search in Google Scholar

Hofmann, R., Hautmann, M., Brayard, A., Nützel, A., Bylund, K.G., Jenks, J.F., Vennin, E., Olivier, N., Bucher, H., 2014. Recovery of benthic marine communities from the end-Permian mass extinction at the low latitudes of eastern Panthalassa. Palaeontology, 57/3, 547–589. https://doi.org/10.1111/pala.12076Search in Google Scholar

Hofmann, R., Hautmann, M., Bucher, H., 2015. Recovery dynamics of benthic marine communities from the Lower Triassic Werfen Formation, northern Italy. Lethaia, 48/4, 474–496. https://doi.org/10.1111/let.12121Search in Google Scholar

Horacek, M., Povoden, E., Richoz, S., Brandner, R., 2010. High-resolution carbon isotope changes, litho- and magnetostratigraphy across Permian-Triassic Boundary sections in the Dolomites, N-Italy. New constraints for global correlation. Palaeogeography, Palaeoclimatology, Palaeoecology, 290, 58–64. https://doi.org/10.1016/j.palaeo.2010.01.007Search in Google Scholar

Jansonius, J., 1962. Palynology of Permian andTriassic sediments, Peace River area, western Canada. Palaeontographica Abteilung B, 110, 35–98.Search in Google Scholar

Kearsey, T., Twitchett, R.J., Price, G.D., Grimes, S.T., 2009. Isotope excursions and palaeotemperature estimates from the Permian/Triassic boundary in the Southern Alps (Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 279, 29–40. https://doi.org/10.1016/j.palaeo.2009.04.015Search in Google Scholar

Kelber, K.-P., Van Konijnenburg-van Cittert, J.H.A., 1998. Equisetites arenaceus from the Upper Triassic of Germany with evidence for reproductive strategies. Review of Palaeobotany and Palynology, 100/1, 1–26. https://doi.org/10.1016/S0034-6667(97)00061-4Search in Google Scholar

Klaus, W., 1963. Sporen aus dem südalpinen Perm (Vergleichsstudie für die Gliederung nordalpiner Salzserien). Jahrbuch der Geologischen Bundesanstalt, 106, 229–361.Search in Google Scholar

Knoll, A.H., Bambach, R.K., Payne, J.L., Pruss, S., Fischer, W.W., 2007. Paleophysiology and end-Permian mass extinction. Earth and Planetary Science Letters, 256/3, 295–313. https://doi.org/10.1016/j.epsl.2007.02.018Search in Google Scholar

Koeberl, C., Farley, K.A., Peucker-Ehrenbrink, B., Sephton, M.A., 2004. Geochemistry of the end-Permian extinction event in Austria and Italy: No evidence for an extraterrestrial component. Geology, 32, 1053–1056. https://doi.org/10.1130/G20907.1Search in Google Scholar

Korte, C., Kozur, H.W., 2010. Carbon-isotope stratigraphy across the Permian–Triassic boundary: A review. Journal of Asian Earth Sciences, 39, 215–235. https://doi.org/10.1016/j.jseaes.2010.01.005Search in Google Scholar

Kraus, S.H., Brandner, R., Heubeck, C., Kozur, H.W., Struck, U., Korte, C., 2013. Carbon isotope signatures of latest Permian marine successions of the Southern Alps suggest a continental runoff pulse enriched in land plant material. Fossil Record, 16/1, 97–109. https://doi.org/10.1002/mmng.201300004Search in Google Scholar

Kustatscher, E., Bernardi, M., Petti, F.M., Franz, M., Van Konijnenburg-van Cittert, J.H.A., Kerp, H., 2017a. Sea-level changes in the Lopingian (late Permian) of the northwestern Tethys and their effects on the terrestrial palaeoenvironments, biota and fossil preservation. Global and Planetary Change, 148, 166–180. https://doi.org/10.1016/j.gloplacha.2016.12.006Search in Google Scholar

Kustatscher, E., Van Konijnenburg-van Cittert, J.H.A., Looy, C.V., Labandeira, C.C., Wappler, T., Butzmann, R., Fischer, T.C., Krings, M., Kerp, H., Visscher, H., 2017b. The Lopingian (late Permian) flora from the Bletterbach Gorge in the Dolomites, Northern Italy: a review. Geo.Alp, 14, 39–61.Search in Google Scholar

Kustatscher, E., Van Konijnenburg-van Cittert, J.H.A., Roghi, G., 2010. Macrofloras and palynomorphs as possible proxies for palaeoclimatic and palaeoecological studies: A case study from the Pelsonian (Middle Triassic) of Kühwiesenkopf/Monte Prà della Vacca (Olang Dolomites, N-Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 290, 71–80. https://doi.org/10.1016/j.palaeo.2009.07.001Search in Google Scholar

Looy, C.V., Hotton, C.L., 2014. Spatiotemporal relationships among Late Pennsylvanian plant assemblages: Palyno-logical evidence from the Markley Formation, West Texas, U.S.A. Review of Palaeobotany and Palynology, 211, 10–27. https://doi.org/10.1016/j.revpalbo.2014.09.007Search in Google Scholar

Looy, C.V., Brugman, W.A., Dilcher, D.L., Visscher, H., 1999. The delayed resurgence of equatorial forests after the Permian–Triassic ecologic crisis. Proceedings of the National Academy of Sciences, 96/24, 13857–13862. https://doi.org/10.1073/pnas.96.24.13857Search in Google Scholar

Looy, C.V., Collinson, M.E., Van Konijnenburg-van Cittert, J.H.A., Visscher, H., Brain, A.P.R., 2005. The ultrastructure and botanical affinity of end-Permian spore tetrads. International Journal of Plant Sciences, 166/5, 875–887. https://doi.org/10.1086/431802Search in Google Scholar

Looy, C.V., Twitchett, R.J., Dilcher, D.L., Van Konijnenburg-van Cittert, J.H.A., Visscher, H., 2001. Life in the end-Permian dead zone. Proceedings of the National Academy of Sciences, 98/14, 7879–7883. https://doi.org/10.1073/pnas.131218098Search in Google Scholar

Massari, F., Conti, M.A., Fontana, D., Helmold, K., Mariotti, N., Neri, C., Nicosia, U., Ori, G.G., Pasini, M., Pittau, P., 1988. The Val Gardena sandstone and Bellerophon Formation in the Bletterbach gorge (Alto Adige, Italy): biostratigraphy and sedimentology. Memorie di Scienze Geologiche, 40, 229–273.Search in Google Scholar

Massari, F., Neri, C., Pittau, P., Fontana, D., Stefani, C., 1994. Sedimentology, palynostratigraphy and sequence stratigraphy of a continental to shallow-marine rift-related succession: Upper Permian of the eastern Southern Alps (Italy). Memorie di Scienze Geologiche, 46, 119–243.Search in Google Scholar

Matthews, K.J., Maloney, K.T., Zahirovic, S., Williams, S.E., Seton, M., Müller, R.D., 2016. Global plate boundary evolution and kinematics since the late Paleozoic. Global and Planetary Change, 146, 226–250. https://doi.org/10.1016/j.gloplacha.2016.10.002Search in Google Scholar

Mette, W., Roozbahani, P., 2012. Late Permian (Changsingian [sic]) ostracods of the Bellerophon Formation at Seis (Siusi) (Dolomites, Italy). Journal of Micropalaeontology, 31/1, 73–87. https://doi.org/10.1144/0262-821X11-010Search in Google Scholar

Meyen, S.V., 1997. Permian conifers of Western Angaraland. Review of Palaeobotany and Palynology, 96/3, 351–447. https://doi.org/10.1016/S0034-6667(96)00046-2Search in Google Scholar

Neri, C., 2007a. Formazione a Bellerophon. In Cita, M.B., Abbate, E., Conti, M.A., Falorni, P., Germani, D., Groppelli, G., Manetti, P., Petti, F.M. – Carta Geologica d’Italia – 1:50.000, Catalogo delle formazioni – Unità tradizionali. Quaderni del Servizio Geologico d’Italia, Series 3, 7/7, 64-73.Search in Google Scholar

Neri, C., 2007b. Formazione di Werfen. In Cita, M.B., Abbate, E., Conti, M.A., Falorni, P., Germani, D., Groppelli, G., Manetti, P., Petti, F.M. – Carta Geologica d’Italia – 1:50.000, Catalogo delle formazioni – Unità tradizionali. Quaderni del Servizio Geologico d’Italia, Series 3, 7/7, 83-96.Search in Google Scholar

Noé, S.U., 1987. Facies and paleogeography of the marine Upper Permian and of the Permian-Triassic boundary in the Southern Alps (Bellerophon Formation, Tesero Horizon). Facies, 16, 89–141. https://doi.org/10.1007/BF02536749Search in Google Scholar

Onorevoli, G., Farabegoli, E., 2014. Modeling the paleogeography of north-western Palaeotethys across the Permian-Triassic boundary: constraints and possible solutions. GSTF International Journal of Geological Sciences (JGS), 1/2, 39–46. https://doi.org/10.5176/2335-6774_1.2.17Search in Google Scholar

Pasini, M., 1981. Nota preliminare su una fauna ad ostracodi dei livelli superiori della Formazione a Bellerophon delle Dolomiti. Rivista Italiana di Paleontologia e Stratigrafia, 87/1, 1–22.Search in Google Scholar

Pittau, P., 2001. Correlation of the upper Permian sporomorph complexes of the Southern Italian Alps with the Tatarian complexes of the stratotype region. Natura Bresciana, Annuario del Museo Civico di Scienze Naturale, Brescia, Monografia, 25, 109–116.Search in Google Scholar

Posenato, R., 2009. Survival patterns of macrobenthic marine assemblages during the end-Permian mass extinction in the western Tethys (Dolomites, Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 280, 150–167. https://doi.org/10.1016/j.palaeo.2009.06.009Search in Google Scholar

Posenato, R., 2010. Marine biotic events in the Lopingian succession and latest Permian extinction in the Southern Alps (Italy). Geological Journal, 45, 195–215. https://doi.org/10.1002/gj.1212Search in Google Scholar

Posenato, R., 2019. The end-Permian mass extinction (EPME) and the Early Triassic biotic recovery in the western Dolomites (Italy): state of the art. Bollettino della Società Paleontologica Italiana, 58, 11–34. https://doi.org/10.4435/BSPI.2019.05Search in Google Scholar

R Core Team, 2013. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org/ (accessed on 22 October 2018).Search in Google Scholar

Raine, J.I., Mildenhall, D.C., Kennedy, E.M., 2011. New Zealand fossil spores and pollen: an illustrated catalogue, 4th ed, GNS Science miscellaneous series, 4. http://data.gns.cri.nz/sporepollen/index.htm (accessed on 22 October 2018).Search in Google Scholar

Rampino, M.R., Eshet, Y., 2018. The fungal and acritarch events as time markers for the latest Permian mass extinction: An update. Geoscience Frontiers, 9/1, 147–154. https://doi.org/10.1016/j.gsf.2017.06.005Search in Google Scholar

Rampino, M.R., Prokoph, A., Adler, A.C., Schwindt, D.M., 2002. Abruptness of the end-Permian mass extinction as determined from biostratigraphic and cyclostratigraphic analyses of. In: Koeberl, C. and MacLeod, K.G. (eds.), Catastrophic Events and Mass Extinctions: Impacts and Beyond. Geological Society of America Special Papers. Geological Society of America, Boulder, Colorado, 356, pp. 415–427.Search in Google Scholar

Raup, D.M., 1979. Size of the Permo-Triassic bottleneck and its evolutionary implications. Science, 206/4415, 217–218. https://doi.org/10.1126/science.206.4415.217Search in Google Scholar

Retallack, G.J., 1997. Earliest Triassic origin of Isoetes and quillwort evolutionary radiation. Journal of Palaeontology, 71/3, 500–521. https://doi.org/10.1017/S0022336000039524Search in Google Scholar

Sandler, A., Eshet, Y., Schilman, B., 2006. Evidence for a fungal event, methane-hydrate release and soil erosion at the Permian–Triassic boundary in southern Israel. Palaeogeography, Palaeoclimatology, Palaeoecology, 242, 68–89. https://doi.org/10.1016/j.palaeo.2006.05.009Search in Google Scholar

Sephton, M.A., Visscher, H., Looy, C.V., Verchovsky, A.B., Watson, J.S., 2009. Chemical constitution of a Permian-Triassic disaster species. Geology, 37/10, 875–878. https://doi.org/10.1130/G30096A.1Search in Google Scholar

Servais, T., Vecoli, M., Li, J., Molyneux, S.G., Raevskaya, E.G., Rubinstein, C.V., 2007. The acritarch genus Veryhachium Deunff 1954: Taxonomic evaluation and first appearance. Palynology, 31/1, 191–203. https://doi.org/10.1080/01916122.2007.9989642Search in Google Scholar

Simpson, G.L., Oksanen, J., 2018. analogue: Analogue and Weighted Averaging Methods for Palaeoecology. https://CRAN.R-project.org/package=analogue. (accessed on 16 November 2018).Search in Google Scholar

Smith, M.R., 2017. Ternary: An R package for creating ternary plots. Zenodo. https://CRAN.R-project.org/package=Ternary. (accessed on 22 October 2018). https://doi.org/10.5281/zenodo.1068996Search in Google Scholar

Spina, A., Cirilli, S., Utting, J., Jansonius, J., 2015. Palynology of the Permian and Triassic of the Tesero and Bulla sections (Western Dolomites, Italy) and consideration about the enigmatic species Reduviasporonites chalastus. Review of Palaeobotany and Palynology, 218, 3–14. https://doi.org/10.1016/j.revpalbo.2014.10.003Search in Google Scholar

Steiner, M.B., Eshet, Y., Rampino, M.R., Schwindt, D.M., 2003. Fungal abundance spike and the Permian–Triassic boundary in the Karoo Supergroup (South Africa). Palaeogeography, Palaeoclimatology, Palaeoecology, 194, 405–414. https://doi.org/10.1016/S0031-0182(03)00230-XSearch in Google Scholar

Taylor, E.L., Taylor, T.N., Krings, M., 2009. Paleobotany: The Biology and Evolution of Fossil Plants, 2nd Ed. Academic Press, Burlington, 1230 pp.Search in Google Scholar

Torsvik, T.H., Cocks, L.R.M., 2017. Earth History and Palaeogeography. Cambridge University Press, Cambridge, UK, 317 pp.Search in Google Scholar

Townrow, J.A., 1962. On some disaccate pollen grains of Permian to Middle Jurassic age. Grana Palynologica, 3/2, 13–44.Search in Google Scholar

Traverse, A., 1988. Paleopalynology. Unwin Hyman Ltd., Boston, MA, USA, 600 pp.Search in Google Scholar

Twitchett, R.J., 1999. Palaeoenvironments and faunal recovery after the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 154, 27–37. https://doi.org/10.1016/S0031-0182(99)00085-1Search in Google Scholar

Twitchett, R.J., Wignall, P.B., 1996. Trace fossils and the aftermath of the Permo-Triassic mass extinction: evidence from northern Italy. Palaeogeography, Palaeo-climatology, Palaeoecology, 124, 137–151. https://doi.org/10.1016/0031-0182(96)00008-9Search in Google Scholar

Tyson, R.V., 1995. Sedimentary Organic Matter: Organic Facies and Palynofacies. Chapman & Hall, London, UK, 615 pp.Search in Google Scholar

Visscher, H., Brugman, W.A., 1986. The Permian–Triassic boundary in the Southern Alps: a palynological approach. Memorie della Società Geologica Italiana, 34, 121–128.Search in Google Scholar

Visscher, H., Brinkhuis, H., Dilcher, D.L., Elsik, W.C., Eshet, Y., Looy, C.V., Rampino, M.R., Traverse, A., 1996. The terminal Paleozoic fungal event: evidence of terrestrial ecosystem destabilization and collapse. Proceedings of the National Academy of Sciences, 93/5, 2155–2158. https://doi.org/10.1073/pnas.93.5.2155Search in Google Scholar

Visscher, H., Looy, C.V., Collinson, M.E., Brinkhuis, H., van Konijnenburg-van Cittert, J.H.A., Kürschner, W.M., Sephton, M.A., 2004. Environmental mutagenesis during the end-Permian ecological crisis. Proceedings of the National Academy of Sciences, 101/35, 12952–12956. https://doi.org/10.1073/pnas.0404472101Search in Google Scholar

Visscher, H., Sephton, M.A., Looy, C.V., 2011. Fungal virulence at the time of the end-Permian biosphere crisis? Geology, 39/9, 883–886. https://doi.org/10.1130/G32178.1Search in Google Scholar

Wignall, P.B., Twitchett, R.J., 2002. Extent, duration, and nature of the Permian-Triassic superanoxic event. In: Koeberl, C. and MacLeod, K.G. (eds.), Catastrophic Events and Mass Extinctions: Impacts and Beyond. Geological Society of America Special Papers, Geological Society of America, Boulder, Colorado, 356, pp. 395–414.Search in Google Scholar

Plan your remote conference with Sciendo