Open Access

On the Pseudorandomness of the Liouville Function of Polynomials over a Finite Field


Cite

[1] BRANDSTÄTTER, N.—WINTERHOF, A.: Linear complexity profile of binary sequences with small correlation measure, Period. Math. Hungar. 52 (2006), no. 2, 1–8.10.1007/s10998-006-0008-1Open DOISearch in Google Scholar

[2] CARLITZ, L.: The arithmetic of polynomials in a Galois field, Amer. J.Math. 54 (1932), no. 1, 39-50.Search in Google Scholar

[3] CARMON, D.—RUDNICK, Z.: The autocorrelation of the Möbius function and Chowla’s conjecture for the rational function field, Q. J. Math. 65 (2014), no. 1, 53–61.10.1093/qmath/has047Open DOISearch in Google Scholar

[4] CASSAIGNE J.—FERENCZI, S.—MAUDUIT, C.—RIVAT, J.—SÁRKÖZY, A.: On finite pseudorandom binary sequences. III. The Liouville function. I, Acta Arith. 87 (1999), no. 4, 367–390.Search in Google Scholar

[5] CASSAIGNE J.—FERENCZI, S.—MAUDUIT, C.—RIVAT, J.—SÁRKÖZY, A.: On finite pseudorandom binary sequences. IV. The Liouville function. II, Acta Arith. 95 (2000), no. 4, 343–359.Search in Google Scholar

[6] CONRAD, K.: Irreducible values of polynomials: a non-analogy, Number fields and function fields-two parallel worlds, Progr. Math. Vol. 239, Birkhäuser Boston, Boston, MA, 2005. pp. 71–85.10.1007/0-8176-4447-4_5Search in Google Scholar

[7] IWANIEC, H.—KOWALSKI, E.: Analytic Number Theory, Amer. Math. Soc. Colloq. Publ., Vol. 53, Amer. Math. Soc., Providence, RI, 2004.Search in Google Scholar

[8] LIDL, R.—NIEDERREITER, H.: Finite fields (Second ed.), Encyclopedia of Mathematics and its Applications. Vol. 20, Cambridge University Press, Cambridge, 1997.Search in Google Scholar

[9] MAUDUIT, C.—SÁRKÖZY, A.: On finite pseudorandom binary sequences. I. Measure of pseudorandomness, the Legendre symbol, Acta Arith. 82 (1997), no. 4, 365–377.Search in Google Scholar

[10] MÉRAI, L.—YAYLA, O.: Improving results on the pseudorandomness of sequences generated via the additive order, Discrete Math. 338 (2015), no. 11, 2020–2025.10.1016/j.disc.2015.04.015Open DOISearch in Google Scholar

[11] PELLET, A. E.: Sur la décomposition dune fonction entiére en facteurs irréductibles suivant un module premier, Comptes Rendus de l’Académie des Sciences Paris 86 (1878), 1071–1072.Search in Google Scholar

[12] ROSEN, M.: Number Theory in Function Fields, Graduate Texts in Mathematics, Vol. 210. Springer-Verlag, New York, 2002.10.1007/978-1-4757-6046-0Search in Google Scholar

[13] SCHMIDT, W. M.: Equations over finite fields: An Elementary Approach (Second ed.), Kendrick Press, Heber City, UT, 2004.Search in Google Scholar

[14] SKOLEM, T.: On a certain connection between the discriminant of a polynomial and the umber of its irreducible factors modp, Norsk. Mat. Tidsskr. 34 (1952), 81–85.Search in Google Scholar

[15] STICKELBERGER, L.: Über eine neue Eigenschaft der Diskriminanten algebraischer Zahlkörper Verh. 1. Internat. Math.-Kongress. Zürich, 1897, Teubner, Leipzig, 1898, 182–193.Search in Google Scholar

[16] SWAN, R. G.: Factorization of polynomials over finite fields Pacific J. Math. 12 (1962), 1099–1106.Search in Google Scholar

[17] TOPUZOĞLU, A.—WINTERHOF, A.: Pseudorandom sequences Topics in Geometry, Coding Theory and Cryptography, Algebr. Appl., Vol. 6, Springer, Dordrecht, 2007, pp. 135–166.10.1007/1-4020-5334-4_4Search in Google Scholar

[18] WINTERHOF, A.: Some estimates for character sums and applications, Des. Codes Cryptogr. 22 (2001), no. 2, 123–131.Search in Google Scholar

eISSN:
2309-5377
Language:
English