Cite

[1] Ma, Z. et al. (2012). Existing building retrofits: Methodology and state-of-the-art. Energy and Buildings. Elsevier B.V. 55. pp. 889–902. doi: 10.1016/j.enbuild.2012.08.018.10.1016/j.enbuild.2012.08.018Search in Google Scholar

[2] Asadi, E. et al. (2014). Multi-objective optimization for building retrofit: A model using genetic algorithm and artificial neural network and an application. Energy and Buildings. Elsevier B.V. 81. pp. 444–456. doi: 10.1016/j.enbuild.2014.06.009.10.1016/j.enbuild.2014.06.009Search in Google Scholar

[3] Hendron, R. et al. (2013). Advanced Energy Retrofit Guide (AERG): Practical Ways to Improve Energy Performance; Healthcare Facilities (Book). Golden, CO (United States). doi: 10.2172/1096100.10.2172/1096100Search in Google Scholar

[4] Zhao, J. and Plagge, R. (2015). Characterization of hygrothermal properties of sandstones - Impact of anisotropy on their thermal and moisture behaviors. Energy and Buildings. Elsevier B.V. 107. pp. 479–494. doi: 10.1016/j.enbuild.2015.08.033.10.1016/j.enbuild.2015.08.033Search in Google Scholar

[5] Kočí, V. et al. (2014). Service life assessment of historical building envelopes constructed using different types of sandstone: A computational analysis based on experimental input data. Scientific World Journal. doi: 10.1155/2014/802509.10.1155/2014/802509411970325114972Search in Google Scholar

[6] Krus, M. (1996). Moisture transport and storage coefficients of porous mineral building materials: Theoretical Principles and New Test Methods. Fraunhofer IRB Verlag. Stuttgart.Search in Google Scholar

[7] Zhao, J. and Plagge, R. (2015). Characterization of hygrothermal properties of sandstones - Impact of anisotropy on their thermal and moisture behaviors. Energy and Buildings. Elsevier B.V. 107. pp. 479–494. doi: 10.1016/j.enbuild.2015.08.033.10.1016/j.enbuild.2015.08.033Search in Google Scholar

[8] Čabalová, D. and Šamalíková, M. (1992). Inžinierska geológia. Bratislava: Alfa.Search in Google Scholar

[9] Čabalová, D. (2013). Krása kameňa v živote človeka. Bratislava: Veda.Search in Google Scholar

[10] Laho, M. et al. (2009). Výber stavebného kameňa pre rekonštrukciu historických objektov. Acta Geol. Slovaca (AGEOS). 1. pp. 9–14.Search in Google Scholar

[11] Deachman, B. (2018). Q is for Quarry: Forgotten, overgrown quarry provided the building blocks of Ottawa’, Ottawa citizen.Search in Google Scholar

[12] Vertaľ, M. and Ďurica, P. (2013). Prenosové parametre vody vo vybraných stavebných materiáloch. Košice: Technická univerzita v Košiciach, Stavebná Fakulta.Search in Google Scholar

[13] STN EN ISO 15148. (2002). Tepelno-vlhkostné vlastnosti stavebných materiálov a výrobkov. Stanovenie koeficientu nasiakavosti pri čiastočnom ponorení.Search in Google Scholar

[14] STN EN 1926. (2002). Skúšky prírodného kameňa. Stanovenie súčiniteľa nasiakavosti kapilaritou.Search in Google Scholar

[15] Kočí, V. et al. (2014). Service life assessment of historical building envelopes constructed using different types of sandstone: A computational analysis based on experimental input data. Scientific World Journal. online: https://www.hindawi.com/journals/tswj/2014/802509/fig1/10.1155/2014/802509Search in Google Scholar

[16] Gall, Q. Section through Nepean formation sandstone and overlying March formation dolostone and sandstone. online: http://www.stunley.com/ogg/site_2centrum.htmSearch in Google Scholar

[17] Énergie et Ressources naturelles. Saint-Canut-Sainte-Scholastique. online: https://mern.gouv.qc.ca/english/mines/industry/architectural/architectural-quarrying-history-sandstone-saintcanut.jspSearch in Google Scholar

[18] Bednarik, M. Laho, M. Holzer R. Historic quarries. online: http://saxa.chc.sbg.ac.at/img/quarries/478_2.jpgSearch in Google Scholar

eISSN:
1338-7278
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other