Cite

1. Stojkovic O. (2008) Forenzicka genetika. In D.J. Dunjic I saradnici (Eds.) Ekspertizna medicina (pp 293-348). Beograd: Evropski centar za mir I razvoj Univerziteta za mir Ujedinjenih NacijaSearch in Google Scholar

2. Bianchi L, Liò P. Forensic DNA and bioinformatics. Brief Bioinform. 2007;8(2): 117-28. [DOI: 10.1093/bib/bbm006].10.1093/bib/bbm006]Open DOISearch in Google Scholar

3. Ziętkiewicz E, Witt M, Daca P et al. Current genetic methodologies in the identification of disaster victims and in forensic analysis. J Appl Genet. 2012;53(1): 41-60. [DOI: 10.1007/s13353-011-0068-7].10.1007/s13353-011-0068-7]Open DOISearch in Google Scholar

4. Pontes ML, Fondevila M, Laréu MV, Medeiros R. SNP Markers as Additional Information to Resolve Complex Kinship Cases. Transfus Med Hemother. 2015;42(6): 385-388. [DOI: 10.1159/000440832].10.1159/000440832]Open DOISearch in Google Scholar

5. Decorte R, Cassiman JJ. Forensic medicine and the polymerase chain reaction technique. J Med Genet. 1993;30(8): 625-633. [PMID:11387627].10.1136/jmg.30.8.62510164878411046Search in Google Scholar

6. Li WH, Sadler LA. Low nucleotide diversity in man. Genetics. 1991;129(2): 513-23. [PMID:1743489].10.1093/genetics/129.2.51312046401743489Search in Google Scholar

7. Lee HC, Ladd C. Preservation and Collection of Biological Evidence. Croat Med J. 2001;42(3): 225-8. [PMID:11387627].Search in Google Scholar

8. Magalhães T, Dinis-Oliveira RJ, Silva B, Corte-Real F, Nuno Vieira D. Biological Evidence Management for DNA Analysis in Cases of Sexual Assault. Scientific World Journal. 2015;2015: 365674. [DOI: 10.1155/2015/365674].10.1155/2015/365674463750426587562Search in Google Scholar

9. Budowle B, van Daal A. Forensically relevant SNP classes. Biotechniques. 2008;44(5): 603-8, 610. [DOI: 10.2144/000112806].10.2144/00011280618474034Search in Google Scholar

10. Hu N, Cong B, Li S, Ma C, Fu L, Zhang X. Current developments in forensic interpretation of mixed DNA samples. Biomed Rep. 2014;2(3): 309-316. [DOI:10.3892/br.2014.232].2474896510.3892/br.2014.232399019824748965Search in Google Scholar

11. Hansen TV, Simonsen MK, Nielsen FC, Hundrup YA. Collection of blood, saliva, and buccal cell samples in a pilot study on the Danish nurse cohort: comparison of the response rate and quality of genomic DNA. Cancer Epidemiol Biomarkers Prev. 2007;16(10): 2072-6. [DOI: 10.1158/1055-9965.EPI-07-0611].10.1158/1055-9965.EPI-07-061117932355Search in Google Scholar

12. Chaudhary G, Dogra TD, Raina A. Evaluation of blood, buccal swabs, and hair follicles for DNA profiling technique using STR markers. Croat Med J. 2015;56(3): 239-45. [DOI:10.3325/cmj.2015.56.511].10.3325/cmj.2015.56.511]Open DOISearch in Google Scholar

13. Li YT, Xie MK, Wu J. DNA profiling in peripheral blood, buccal swabs, hair follicles and semen from a patient following allogeneic hematopoietic stem cells transplantation. Biomed Rep. 2014;2(6): 804-808. [DOI:10.3892/br.2014.332].10.3892/br.2014.332]Open DOISearch in Google Scholar

14. Schrader C, Schielke A, Ellerbroek L, Johne R. PCR inhibitors - occurrence, properties and removal. J Appl Microbiol. 2012 Nov;113(5):1014-26. [DOI: 10.1111/j.1365-2672.2012.05384.x].10.1111/j.1365-2672.2012.05384.x]Open DOISearch in Google Scholar

15. Zimmermann BG, Park NJ, Wong DT. Genomic targets in saliva. Ann N Y Acad Sci. 2007;1098: 184-91. [DOI:10.1196/annals.1384.002].10.1196/annals.1384.002]Open DOISearch in Google Scholar

16. Kermekchiev MB, Kirilova LI, Vail EE, Barnes WM. Mutants of Taq DNA polymerase resistant to PCR inhibitors allow DNA amplification from whole blood and crude soil samples. Nucleic Acids Res. 2009 Apr;37(5):e40. [DOI: 10.1093/nar/gkn1055].10.1093/nar/gkn1055]Open DOISearch in Google Scholar

17. Al-Soud WA, Jönsson LJ, Râdström P. Identification and characterization of immunoglobulin G in blood as a major inhibitor of diagnostic PCR. J Clin Microbiol. 2000 Jan;38(1):345-50. [PMID:10618113].10.1128/JCM.38.1.345-350.20008872110618113Search in Google Scholar

18. Khare P, Raj V, Chandra S, Agarwal S. Quantitative and qualitative assessment of DNA extracted from saliva for its use in forensic identification. J Forensic Dent Sci. 2014;6(2): 81-5. [DOI: 10.4103/0975-1475.132529].10.4103/0975-1475.132529]Open DOISearch in Google Scholar

19. Kenna J, Smyth M, McKenna L, Dockery C, McDermott SD. The recovery and persistence of salivary DNA on human skin. J Forensics Sci. 2011;56: 170-75. [DOI: 10.1111/j.1556-4029.2010.01520.x]10.1111/j.1556-4029.2010.01520.x20707837Open DOISearch in Google Scholar

20. Chávez-Briones ML, Hernández-Cortés R, Jaramillo-Rangel G, Ortega-Martínez M. Relevance of sampling and DNA extraction techniques for the analysis of salivary evidence from bite marks: a case report. Genet Mol Res. 2015;14(3): 10165-71. [DOI: 10.4238/2015. August.21.23].10.4238/2015..21.23]Open DOISearch in Google Scholar

21. Cook O, Dixon L. The prevalence of mixed DNA profiles in fingernail samples taken from individuals in the general population. Forensic Sci Int Genet. 2007;1(1): 62-8. [DOI: 10.1016/j.fsigen.2006.10.009].10.1016/j.fsigen.2006.10.00919083729Search in Google Scholar

22. Bourguignon L, Hoste B, Boonen T, Vits K, Hubrecht F. A fluorescent microscopy-screening test for efficient STR-typing of telogen hair roots. Forensic Sci Int Genet. 2008;3: 27-31. [DOI: 10.1016/j.fsigen.2008.08.006].10.1016/j.fsigen.2008.08.006]Open DOISearch in Google Scholar

23. Miloš A, Selmanović A, Smajlović L et al. Success rates of nuclear short tandem repeat typing from different skeletal elements. Croat Med J. 2007;48(4): 486-93. [PMID:17696303].Search in Google Scholar

24. Higgins D, Rohrlach AB, Kaidonis J, Townsend G, Austin JJ. Differential nuclear and mitochondrial DNA preservation in post-mortem teeth with implications for forensic and ancient DNA studies. PLoS One. 2015;10(5): e0126935. [DOI: 10.1371/journal.pone.0126935].10.1371/journal.pone.0126935443807625992635Search in Google Scholar

25. Sakari SL, Jimson S, Masthan KM, Jacobina J. Role of DNA profiling in forensic odontology. J Pharm Bio-allied Sci. 2015;7(1): 138-41. [DOI: 10.4103/0975-7406.155863].10.4103/0975-7406.155863]Open DOISearch in Google Scholar

26. Iwamura ES, Soares-Vieira JA, Muñoz DR. Human identification and analysis of DNA in bones. Rev Hosp Clin Fac Med Sao Paulo. 2004;59(6): 383-8. [http://dx.doi.org/10.1590/S0041-87812004000600012].10.1590/S0041-8781200400060001215654493Search in Google Scholar

27. Budowle B, Eisenberg AJ, van Daal A. Validity of low copy number typing and applications to forensic science. Croat Med J. 2009;50(3): 207-17. [DOI: 10.3325/cmj.2009.50.207].10.3325/cmj.2009.50.207]Open DOISearch in Google Scholar

28. Budowle B, van Daal A. Extracting evidence from forensic DNA analyses: future molecular biology directions. Biotechniques. 2009;46(5): 339-40, 342-50. [DOI: 10.2144/000113136].10.2144/000113136]Open DOISearch in Google Scholar

29. Maciejewska A, Wlodarczyk R, Pawlowski R. The influence of high temperature on the possibility of DNA typing in various human tissues. Folia Histochem Cytobiol. 2015;53(4): 322-332. [DOI: 10.5603/fhc.a2015.0029].10.5603/fhc.a2015.0029]Open DOISearch in Google Scholar

30. Hu N, Cong B, Gao T, Hu R, Chen Y, Tang H. Evaluation of parameters in mixed male DNA profiles for the Identifiler® multiplex system. Int J Mol Med. 2014;34(1): 43-52. [DOI: 10.3892/ijmm.2014.1779].10.3892/ijmm.2014.1779]Open DOISearch in Google Scholar

31. Girish K, Rahman FS, Tippu SR. Dental DNA fingerprinting in identification of human remains. J Forensic Dent Sci. 2010 Jul;2(2):63-8. [DOI: 10.4103/0975-1475.81284].10.4103/0975-1475.81284312595521731342Search in Google Scholar

32. Jobling MA, Gill P. Encoded evidence: DNA in forensic analysis. Nat Rev Genet. 2004 Oct;5(10):739-51. [DOI: 10.1038/nrg1455].10.1038/nrg1455]Open DOISearch in Google Scholar

33. National Research Council (US) Committee on DNA Forensic Science: An Update. The Evaluation of Forensic DNA Evidence. Washington (DC): National Academies Press (US); 1996: 65-69. [DOI: 10.17226/5141].10.17226/5141]Open DOISearch in Google Scholar

34. Jeffreys AJ, Wilson V, Thein SL. Individual-specific ‘fingerprints’ of human DNA. Nature. 1985;316(6023): 76-9. [PMID:2989708].10.1038/316076a02989708Search in Google Scholar

35. Tracey M. Short Tandem Repeat-based Identification of Individuals and Parents. Croat Med J. 2001;42(3): 233-8. [PMID: 11387629].11387629Search in Google Scholar

36. John M. Butler. Short tandem repeat typing technologies used in human identity testing. Biotechniques. 2007;43(4):ii-v. [DOI: 10.2144/000112582].10.2144/000112582]Open DOISearch in Google Scholar

37. Jovanovich S, Bogdan G, Belcinski R et al. Developmental validation of a fully integrated sample-to-profile rapid human identification system for processing single-source reference buccal samples. Forensic Sci Int Genet. 2015;16: 181-94. [DOI: 10.1016/j.fsigen.2014.12.004].10.1016/j.fsigen.2014.12.004]Open DOISearch in Google Scholar

38. Foroughmand AM, Jari M, Kazeminezhad SR, Abdollahi A, Ahmadi L, Heidari M. Genetic analysis of two STR loci (VWA and TPOX) in the Iranian province of Khuzestan. Iran J Basic Med Sci. 2014;17(8): 583-7. [PMID:25422751].Search in Google Scholar

39. Sanchez JJ, Phillips C, Børsting C et al. A multiplex assay with 52 single nucleotide polymorphisms for human identification. Electrophoresis. 2006;27(9): 1713-24. [DOI: 10.1002/elps.200500671].10.1002/elps.200500671]Open DOISearch in Google Scholar

40. Gill P, Ivanov PL, Kimpton C et al. Identification of the remains of the Romanov family by DNA analysis. Nat Genet. 1994;6(2): 130-5. [DOI:10.1038/ng0294-130].816206610.1038/ng0294-130]Search in Google Scholar

41. Mulero JJ, Chang CW, Lagacé RE et al. Development and validation of the AmpFlSTR MiniFiler PCR Amplification Kit: a MiniSTR multiplex for the analysis of degraded and/or PCR inhibited DNA. J Forensic Sci. 2008;53(4): 838-52. [DOI: 10.1111/j.1556-4029.2008.00760.x].10.1111/j.1556-4029.2008.00760.x]Open DOISearch in Google Scholar

42. Gill P, Fereday L, Morling N, Schneider PM. The evolution of DNA databases--recommendations for new European STR loci. Forensic Sci Int. 2006;156(2-3): 242-4. [DOI: http://dx.doi.org/10.1016/j.forsciint.2005.05.036].10.1016/j.forsciint.2005.05.036]Open DOISearch in Google Scholar

43. Yang Y, Xie B, Yan J. Application of Next-generation Sequencing Technology in Forensic Science. Genomics Proteomics Bioinformatics. 2014;12(5): 190-7. [DOI: 10.1016/j.gpb.2014.09.001].10.1016/j.gpb.2014.09.001]Open DOISearch in Google Scholar

44. Liu F, Visser M, Duffy DL et al. Genetics of skin color variation in Europeans: genome-wide association studies with functional follow-up. Hum Genet. 2015;134(8): 823-35. [DOI: 10.1007/s00439-015-1559-0].10.1007/s00439-015-1559-0449526125963972Search in Google Scholar

45. Kidd KK, Speed WC. Criteria for selecting micro-haplotypes: mixture detection and deconvolution. Investig Genet. 2015;6: 1. [DOI: 10.1186/s13323-014-0018-3].10.1186/s13323-014-0018-3]Open DOISearch in Google Scholar

46. Walsh S, Liu F, Ballantyne KN, van Oven M, Lao O, Kayser M. IrisPlex: a sensitive DNA tool for accurate prediction of blue and brown eye colour in the absence of ancestry information. Forensic Sci Int Genet. 2011;5(3): 170-80. [DOI: 10.1016/j.fsigen.2010.02.004].10.1016/j.fsigen.2010.02.004]Open DOISearch in Google Scholar

47. Parsons TJ, Coble MD. Increasing the forensic discrimination of mitochondrial DNA testing through analysis of the entire mitochondrial DNA genome. Croat Med J. 2001;42(3): 304-9. [PMID:11387644].11387644Search in Google Scholar

48. Li L, Lin Y, Liu Y, Zhu R, Zhao Z, Que T. A case of false mother included with 46 autosomal STR markers. Investig Genet. 2015;6: 9. [DOI: 10.1186/s13323-015-0026-y].10.1186/s13323-015-0026-y]Open DOISearch in Google Scholar

49. Westen AA, Kraaijenbrink T, Clarisse L et al. Analysis of 36 Y-STR marker units including a concordance study among 2085 Dutch males. Forensic Sci Int Genet. 2015;14: 174-81. [DOI: 10.1016/j.fsigen.2014.10.012].10.1016/j.fsigen.2014.10.012]Open DOISearch in Google Scholar

50. Ballantyne KN, Ralf A, Aboukhalid R et al. Toward male individualization with rapidly mutating y-chromosomal short tandem repeats. Hum Mutat. 2014;35(8): 1021-32. [DOI: 10.1002/humu.22599].10.1002/humu.22599Search in Google Scholar

51. Vieira TC, Gigonzac MA, Silva DM, Rodovalho RG, Santos GS, da Cruz AD. Y-STR haplotype diversity and population data for Central Brazil: implications for environmental forensics and paternity testing. Genet Mol Res. 2014;13(2): 3404-10. [DOI: 10.4238/2014. April.30.1].24841785Search in Google Scholar

52. Barra GB, Santa Rita TH, Chianca CF et al. Fetal male lineage determination by analysis of Y-chromo-some STR haplotype in maternal plasma. Forensic Sci Int Genet. 2015;15: 105-10. [DOI: 10.1016/j.fsigen.2014.11.006].10.1016/j.fsigen.2014.11.006Search in Google Scholar

53. Zhang S, Bian Y, Li L et al. Population genetic study of 34 X-Chromosome markers in 5 main ethnic groups of China. Sci Rep. 2015;5: 17711. [DOI: 10.1038/srep17711].10.1038/srep17711]Open DOISearch in Google Scholar

54. Trindade-Filho A, Ferreira S, Oliveira SF. Impact of a chromosome X STR Decaplex in deficiency paternity cases. Genet Mol Biol. 2013;36(4): 507-10. [DOI: 10.1590/S1415-47572013000400008].10.1590/S1415-47572013000400008Search in Google Scholar

55. Stroun M, Anker P, Beljanski M et al. Presence of RNA in the nucleoprotein complex spontaneously relased by human lymphocytes and frog auricles in culture. Cancer res. 1978;38: 3546-54. [PMID: 688240].Search in Google Scholar

56. O’Driscoll L. Extracellular nucleic acids and their potential as diagnostic, prognostic and predictive biomarkers. Anticancer Res. 2007;27(3A): 1257-65. [PMID:17593617].Search in Google Scholar

57. Juusola J, Ballantyne J. Messenger RNA profiling: a prototype method to supplant conventional methods for body fluid identification. Forensic Sci Int. 2003;135(2): 85-96. [DOI:http://dx.doi.org/10.1016/S0379-0738(03)00197-X].10.1016/S0379-0738(03)00197-X]Open DOISearch in Google Scholar

58. Xu Y, Xie J, Cao Y et al. Development of highly sensitive and specific mRNA multiplex system (XCYR1) for forensic human body fluids and tissues identification. PLoS One. 2014;9(7): e100123. [DOI: 10.1371/journal.pone.0100123].10.1371/journal.pone.0100123408902824991806Search in Google Scholar

59. Juusola J, Ballantyne J. Multiplex mRNA profiling for the identification of body fluids. Forensic Sci Int. 2005;152(1): 1-12. [DOI:http://dx.doi.org/10.1016/j.forsciint.2005.02.020].10.1016/j.forsciint.2005.02.020]Open DOISearch in Google Scholar

60. Lo YM, Corbetta N, Chamberlain PF et al. Presence of fetal DNA in maternal plasma and serum. Lancet.1997;350(9076): 485-7. [DOI: http://dx.doi.org/10.1016/S0140-6736(97)02174-0].10.1016/S0140-6736(97)02174-0]Open DOISearch in Google Scholar

61. Hu N, Cong B, Li S, Ma C, Fu L, Zhang X. Current developments in forensic interpretation of mixed DNA samples. Biomed Rep. 2014;2(3): 309-316. [DOI:10.3892/br.2014.232].10.3892/br.2014.232]24748965Open DOISearch in Google Scholar

62. Marjanović D, Konjhodžić R, Butorac SS et al. Forensic DNA databases in Western Balkan region: retrospectives, perspectives, and initiatives. Croat Med J. 2011;52(3): 235-44. [DOI:10.3325/cmj.2011.52.235].2167482110.3325/cmj.2011.52.235]Search in Google Scholar

63. Oostdik K, Lenz K, Nye J et al. Developmental validation of the PowerPlex(®) Fusion System for analysis of casework and reference samples: A 24-locus multiplex for new database standards. Forensic Sci Int Genet. 2014;12: 69-76. [DOI: 10.1016/j.fsigen.2014.04.013].10.1016/j.fsigen.2014.04.013]Open DOISearch in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, other