1. bookVolume 65 (2016): Issue 2 (December 2016)
Journal Details
License
Format
Journal
eISSN
2509-8934
First Published
22 Feb 2016
Publication timeframe
1 time per year
Languages
English
access type Open Access

Gene dispersal via seeds and pollen and their effects on genetic structure in the facultative-apomictic Neotropical tree Aspidosperma polyneuron

Published Online: 27 Oct 2017
Page range: 46 - 57
Journal Details
License
Format
Journal
eISSN
2509-8934
First Published
22 Feb 2016
Publication timeframe
1 time per year
Languages
English
Abstract

Facultative apomictic trees can produce offspring with a genotype identical to the mother due to asexual propagation through the embryo derived from cells in the maternal ovule tissues. These trees can also produce offspring with a genotype different from the mother due to genetic recombination. For many trees, these reproductive processes remain largely unexplored. Herein, we use microsatellite markers to identify apomictic and sexual reproduction in samples of adult and juvenile trees of the tropical, insect pollinated and wind seed dispersed Aspidosperma polyneuron, within a conservation area in Brazil. We also investigate seed and pollen flow and dispersal patterns and compare the genetic diversity, inbreeding, and intrapopulation spatial genetic structure (SGS) between adults and juveniles in two plots. Our results show that the species present both apomictic and sexual reproduction. Sexual reproduction occurred mainly by outcrossing, but we did detect instances of self-fertilization and mating among relatives, which explains the inbreeding observed in juveniles. Seed dispersal distance was shorter than pollen dispersal distance in one of the plots, suggesting that insect vectors are more efficient in gene dispersal than wind for seed dispersal in a high density tropical forest. The patterns of pollen and seed dispersal showed isolation by distance, explaining the SGS detected for adults and juveniles. Our results show that both seed and pollen flow increase the allelic diversity in the population. The regeneration of apomictic individuals may guarantee the continuation of genotypes adapted specifically to the study site, while sexual reproduction results in new genotypes.

Keywords

Ashley MV (2010) Plant parentage, pollination, and dispersal: How DNA microsatellite have altered the landscape. Critical Reviews in Plant Sciences 29:48–161. Available at http://dx.doi.org/10.1080/07352689.2010.481167.10.1080/07352689.2010.481167Open DOISearch in Google Scholar

Asker SE, Jeling L (1992) Apomixis in plants. Boca Raton: CRC Press Inc, USA, Florida, ISBN 0-8493-4545-6.Search in Google Scholar

Austerlitz F, Dick CW, Dutech C, Klein EK, Oddou-Muratorio S, Smouse PE, Sork VL (2004) Using genetic markers to estimate the pollen dispersal curve. Using genetic markers to estimate the pollen dispersal curve. Molecular Ecology 13:937–954. Available at http://dx.doi.org/10.1111/j.1365-294X.2004.02100.x10.1111/j.1365-294X.2004.02100.x15012767Open DOISearch in Google Scholar

Baldauf C, Ciampi-Guillardi M, Aguirra TJ, Correa CE, Santos FAM, Souza AP, Sebbenn AM (2014) Genetic diversity, spatial genetic structure and realized seed and pollen dispersal of Himatanthus drasticus (Apocynaceae) in the Brazilian savanna. Conservation Genetics 15:1073–1083. Available at http://dx.doi.org/10.1007/s10592-014-0600-5.10.1007/s10592-014-0600-5Open DOISearch in Google Scholar

Bittencourt JM, Sebbenn AM (2007) Patterns of pollen and seed dispersal in a small fragmented population of a wind pollinated Araucaria angustifolia in southern Brazil. Heredity 99:580–591. Available at http://dx.doi.org/10.1038/sj.hdy.6801019.10.1038/sj.hdy.680101917928810Open DOISearch in Google Scholar

Blouin MS, Parsons M, Lacaille V, Lotz S (1996) Use of microsatellite loci to classify individuals by relatedness. Molecular Ecology 5:393–401. Available at http://dx.doi.org/10.1046/j.1365-294X.1996.00094.x.10.1111/j.1365-294X.1996.tb00329.x8688959Open DOISearch in Google Scholar

Born C, Hardy OJ, Chevallier MH, Ossari S, Attéké C, Wickings EJ, Hossaert-McKey M (2008) Small-scale spatial genetic structure in the Central African rainforest tree species Aucoumea klaineana: a stepwise approach to infer the impact of limited gene dispersal, population history and habitat fragmentation. Molecular Ecology 17:2041–2050. Available at http://dx.doi.org/10.1111/j.1365-294X.2007.03685.x.10.1111/j.1365-294X.2007.03685.x18331246Open DOISearch in Google Scholar

Burczyk J, DiFazio SP, Adams WT (2004) Gene flow in forest trees: how far do genes really travel? Forest Genetics 11:1–14. Available at http://dx.doi.org/10.1590/S0044-59672008000300010.10.1590/S0044-59672008000300010Open DOISearch in Google Scholar

Carvalho PER (2003) Espécies arbóreas brasileiras. Embrapa Informação Tecnológica e Embrapa Florestas, Brasília, ISBN 978-85-7383-487-1.Search in Google Scholar

Chybicki IJ, Burczyk J (2009) Simultaneous estimation of null alleles and inbreeding coefficients. Journal Heredity 100:106–113. Available at http://dx.doi.org/10.1093/jhered/esn088.10.1093/jhered/esn08818936113Open DOISearch in Google Scholar

Chybicki IJ, Burczyk J (2010) NM+: software implementing parentage-based models for estimating gene dispersal and mating patterns in plants. Molecular Ecology Resources 10:1071–1075. Available at http://dx.doi.org/10.1111/j.1755-0998.2010.02849.x.10.1111/j.1755-0998.2010.02849.x21565118Search in Google Scholar

Degen B, Sebbenn AM (2014) Genetic and tropical forest. In: Pancel L, Kölh M (eds). Tropical Forestry Handbook, 2nd ed. Berlin Heidelberg: Springer Verlag, Germany, ISBN 978-3-642-54602-0.Search in Google Scholar

Dering M, Chybicki IJ, Raczka G (2015) Clonality as a driver of spatial genetic structure in populations of clonal tree species. Journal Plant Resources 128:731–745. Available at http://dx.doi.org/10.1007/s10265-015-0742-7.10.1007/s10265-015-0742-726153428Open DOISearch in Google Scholar

Dick CW, Hardy OJ, Jones FA, Petit RJ (2008) Spatial scales of pollen and seed-mediated gene flow in tropical rain forest trees. Tropic Plant Biology 1:20–33. Available at http://dx.doi.org/10.1007/s12042-007-9006-6.10.1007/s12042-007-9006-6Open DOISearch in Google Scholar

Dorken ME, Eckert CG (2001) Severely reduced sexual reproduction in northern populations of a clonal plant, Decodon verticillatus (Lythraceae). Ecology 89:339–350. Available at http://dx.doi.org/10.1046/j.1365-2745.2001.00558.x.10.1046/j.1365-2745.2001.00558.xOpen DOISearch in Google Scholar

Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15.Search in Google Scholar

Duminil J, Dainou K, Kaviriri DK, Gillet P, Loo J, Doucet JL, Hardy OJ (2016) Relationships betwenn population density, fine-scale genetic structure, mating system and pollen dispersal in a timber tree from African rainforests. Heredity 116:295–303. Available at http://dx.doi.org/10.1038/hdy.2015.101.10.1038/hdy.2015.101480656826696137Open DOISearch in Google Scholar

Finger A, Kettle CJ, Kaiser-Bunbury CN, Valentin T, Mougal J, Ghazoul J (2012) Forest fragmentation genetics in a formerly widespread island endemic tree: Vateriopsis seychellarum (Dipterocarpaceae). Molecular Ecology 21:2369–2382. Available at http://dx.doi.org/10.1111/j.1365-294X.2012.05543.x.10.1111/j.1365-294X.2012.05543.x22463385Open DOISearch in Google Scholar

Gaino APSC, Silva AM, Moraes MA, Alves PF, Moraes MLT, Freitas MLM, Sebbenn AM (2010) Understanding the effects of isolation on seed and pollen flow, spatial genetic structure and effective population size of the dioicious tropical tree species Myracrodruon urundeuva. Conservation Genetics 11:1631–1643. Available at http://dx.doi.org/10.1007/s10592-010-0046-3.10.1007/s10592-010-0046-3Open DOISearch in Google Scholar

Goudet J (1995) FSTAT (Version 1.2): A computer program to calculate F-statistics. Heredity 86:485–486. Available at http://dx.doi.org/10.1093/oxfordjournals.jhered.a111627.10.1093/oxfordjournals.jhered.a111627Open DOISearch in Google Scholar

Hardesty BD, Hubbell SP, Bermingham E (2006) Genetic evidence of frequent long-distance recruitment in a vertebrate-dispersed tree. Ecology Letters 9:516–525. Available at http://dx.doi.org/10.1111/j.1461-0248.2006.00897.x.10.1111/j.1461-0248.2006.00897.x16643297Open DOISearch in Google Scholar

Hardy O, Vekemans X (2002) SPAGEDI: a versatile computer program to analyze spatial genetic structure at the individual or population levels. Molecular Ecology Notes 2:618–620. Available at http://dx.doi.org/10.1046/j.1471-8286.2002.00305.x.10.1046/j.1471-8286.2002.00305.xOpen DOISearch in Google Scholar

Hardy OJ, Maggia L, Bandou E, Breyne P, Henri Caron H, Chevallier M, Doliguez A, Dutech C, Kremer A, Latouche-Halle C, Troispoux V, Veron V, Degen B (2006) Fine-scale genetic structure and gene dispersal inferences in 10 Neotropical tree species Molecular Ecology 15:559–579. Available at http://doi:10.1111/j.1365-294X.2005.02785.x.10.1111/j.1365-294X.2005.02785.x16448421Search in Google Scholar

Ismail SA, Ghazoul J, Ravikanth G, Uma Shaanker R, Kushalappa CG, Kettle CJ (2014) Fragmentation genetics of Vateria indica: Implications for management of forest genetic resources of an endemic dipterocarp. Conservation Genetics 15:533–545. Available at http://dx.doi.org/10.1007/s10592-013-0559-7.10.1007/s10592-013-0559-7Open DOISearch in Google Scholar

Jones FA, Hubbell SP (2006) Demographic spatial genetic structure of the Neotropical tree, Jacaranda copaia. Molecular Ecology 15:3205–3217. Available at http://dx.doi.org/10.1111/j.1365-294X.2006.03023.x.10.1111/j.1365-294X.2006.03023.x16968265Open DOISearch in Google Scholar

Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology 16:1099–1106. Available at http://dx.doi.org/10.1111/j.1365-294X.2007.03089.x.10.1111/j.1365-294X.2007.03089.x17305863Open DOISearch in Google Scholar

Koltunow AM (1993) Apomixis: embryo sacs and embryos formed without meiosis or fertilization in ovules. The Plant Cell 5:1425–1437. Available at http://dx.doi.org/10.1105/tpc.5.10.1425.10.1105/tpc.5.10.142516037312271038Open DOISearch in Google Scholar

Köppen W (1948) Climatologia: con un estudio de los climas de la tierra. México: Fondo de Cultura Econômica.Search in Google Scholar

Lindgren D, Mullin TJ (1998) Relatedness and status number in seed orchard crops. Canadian Journal of Forest Research 28:276–283. Available at http://dx.doi.org/10.1139/cjfr-28-2-276.10.1139/cjfr-28-2-276Open DOISearch in Google Scholar

Loiselle BA, Sork VL, Nason J, Graham C (1995) Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). American Journal of Botany 82:1420–1425. Available at http://www.jstor.org/stable/2445869.10.2307/2445869Open DOISearch in Google Scholar

Murawski DA (1995) Reproductive biology and genetics of tropical trees from a canopy perspective. In: Lowman MD, Nadkarmi NM (Ed). Forest canopies. Academic Press, pp. 457–493.Search in Google Scholar

Oddou-Muratorio S, Klein EK (2008) Comparing direct vs. indirect estimates of gene flow within a population of a scattered tree species. Molecular Ecology 17:2743–2754. Available at http://dx.doi.org/10.1111/j.1365-294X.2008.03783.x.10.1111/j.1365-294X.2008.03783.x18482266Open DOISearch in Google Scholar

Ramos R (2012) Sistema de cruzamento, fluxo de pólen e isolamento genético de Aspidosperma polyneuron Müll. Arg. em um fragmento localizado no interior de São Paulo. PhD Theses. Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Ribeirão Preto, SP, Brazil. Available at http://www.bv.fapesp.br/pt/bolsas/109480.Search in Google Scholar

Ramos RF, Monteiro M, Zucchi MI, Pinheiro JB, Martinez CA, Mestriner MA, Alzete-Marin AL (2011) Microsatellite markers for Aspidosperma polyneuron (Apocynaceae), an endangered tropical tree species. American Journal of Botany 98:300–302. Available at http://dx.doi.org/oi:10.3732/ajb.1100222.10.3732/ajb.110022222003175Open DOISearch in Google Scholar

Silva CRS, Albuquerque PSB, Ervedosa FR, Mota JWS, Figueira A, Sebbenn AM (2011) Understanding the genetic diversity, spatial genetic structure and mating system at the hierarchical levels of fruits and individuals of a continuous Theobroma cacao population from the Brazilian Amazon. Heredity 106:973–985. Available at http://dx.doi.org/10.1038/hdy.2010.145.10.1038/hdy.2010.145318625321139632Open DOISearch in Google Scholar

Soons MB, Heil GW, Nathan R, Katul GG (2004) Determinants of long-distance seed dispersal by wind in grasslands. Ecology 85:3056–3068. Available at http://dx.doi.org/10.1890/03-0522.10.1890/03-0522Open DOISearch in Google Scholar

Spoladore J, Mansano VF, Lemes MR, Freitas LCD, Sebbenn AM (2017) Genetic conservation of small populations of the endemic tree Swartzia glazioviana (Taub.) Glaz. (Leguminosae) in the Atlantic Forest. Conservation Genetics. Available at http://dx.doi.org/10.1007/s10592-017-0962-6.10.1007/s10592-017-0962-6Open DOISearch in Google Scholar

Tarazi R, Sebbenn AM, Kageyama PK, Vencovsky R (2013) Long-distance dispersal in a fire- and livestock-protected Savanna. Ecology and Evolution 3:1003–1015. Available at http://dx.doi.org/10.1002/ece3.515.10.1002/ece3.515363141023610640Open DOISearch in Google Scholar

Torezan JMD, Souza RF, Ruas PM, Ruas CF, Camargo EH, Vanzela ALL (2005) Genetic variability of pré and pos-fragmentation cohorts of Aspidosperma polyneuron Muell. Arg. (Apocynaceae). Brazilian Achieve Biology and Technology 48:171–180. Available at http://dx.doi.org/10.1590/S1516-89132005000200002.10.1590/S1516-89132005000200002Open DOISearch in Google Scholar

van Loo M, Joseph JA, Heinze B, Fay MF, Christian Lexer C (2008) Clonality and spatial genetic structure in Populus canescens and its sympatric backcross parent P. alba in a Central European hybrid zone. New Phytologist 177:506–516. Available at http://dx.doi.org/10.1111/j.1469-8137.2007.02266.x.10.1111/j.1469-8137.2007.02266.x18005320Open DOISearch in Google Scholar

Vaughan SP, Cottrell JE, Moodley DJ, Connolly T, Russell K (2007) Distribution and fine-scale spatial-genetic structure in British wild cherry (Prunus avium L.). Heredity 98:274–283. Available at http://dx.doi.org/10.1038/sj.hdy.6800935.10.1038/sj.hdy.680093517245421Open DOISearch in Google Scholar

Vekemans X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analysis in plant populations. Molecular Ecology 13:921–935. Available at http://dx.doi.org/10.1046/j.1365-294X.2004.02076.x.10.1046/j.1365-294X.2004.02076.xOpen DOISearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo