1. bookVolume 63 (2014): Issue 1-6 (December 2014)
Journal Details
First Published
22 Feb 2016
Publication timeframe
1 time per year
access type Open Access

Genetic diversity of Picea likiangensis natural population at different altitudes revealed by EST-SSR markers

Published Online: 01 Jun 2017
Volume & Issue: Volume 63 (2014) - Issue 1-6 (December 2014)
Page range: 191 - 197
Received: 30 Oct 2013
Journal Details
First Published
22 Feb 2016
Publication timeframe
1 time per year

Altitude is thought to have greatly influenced current species distribution and their genetic diversity. However, it is unclear how different altitudes have affected the distribution and genetic diversity of Picea likiangensis, a dominant forestry species in the Qinghai-Tibetan Plateau region (QTP). In this study, we investigated the genetic diversity of Picea likiangensis populations which distributed in different altitudes of QTP using EST-SSR markers. The results suggested that this species has high genetic diversity at species level, with 100% of loci being polymorphic and an average Nei’s gene diversity (He) of 0.7186 and Shannon’s information index (I) of 1.5415. While the genetic diversity of Picea likiangensis at population level was lower than that at species level, with He and I being 0.6562 and 1.3742, respectively. The variation in genetic diversity of all four studied populations indicated a low-high-low pattern along the elevation gradients. The mid-elevation population (3050 m) was more genetically diverse than both low-elevation (2900 m) and high-elevation populations (3200 m and 3350 m). Nei’s genetic diversity (Fst = 0.0809) and AMOVA analysis (Phist = 0.1135) indicated that a low level of genetic differentiation among populations. Gene flow among populations was 2.8384, suggesting that high gene flow is a main factor leading to high levels of the genetic diversity among populations.


ACHERÉ, V., P. FAIVER-RAMPANT, S. JEANDROZ, G. BESNARE, T. MARKUSSEN, A. ARAGONES, M. FLADUNG, E. RITTER and J. M. FAVRE (2004): A full saturated linkage map of Picea abies including AFLP, SSR, ESTP, 5S rDNA and morphological markers. Theor Appl Genet 108: 1602-1613.10.1007/s00122-004-1587-y14991106Search in Google Scholar

ACHERÉ, V., J. M. FAVRE, G. BESNARD and S. JEANDROZ (2005): Genomic organization of molecular differentiation in Norway spruce (Picea abies). Mol Ecol, 14: 3191-3201.10.1111/j.1365-294X.2005.02646.x16101784Search in Google Scholar

BENNETT, K. D., S. G. HABERLE and S. H. LUMLEY (2000): The last glacialholocene transition in South Chile. Science 290: 325-328.10.1126/science.290.5490.32511030648Search in Google Scholar

BIALOZYT, R., B. ZIEGENHAGEN and R. J. PETIT (2006): Contrasting effects of long distance seed dispersal on genetic diversity during range expansion. J Evol Biol 19: 12-20.10.1111/j.1420-9101.2005.00995.x16405572Search in Google Scholar

BROOKFIELD, J. F. Y. (1996): A simple new method for estimating null allele frequency from heterozygote deficiency. Mol Ecol 5: 453-455.10.1111/j.1365-294X.1996.tb00336.xSearch in Google Scholar

CHEN, X. Y., X. X. FAN and X. S. HU (2008): Roles of seed and pollen dispersal in natural regeneration of Castanopsis fargesii (Fagaceae): implications for forest management. For Ecol Manag 256: 1143-1150.10.1016/j.foreco.2008.06.014Search in Google Scholar

CHEN, S., G. L. WU, D. J. ZHANG, Q. G. GAO, Y. Z. DUAN, F. Q. ZHANG and S. L. CHEN (2008): Potential refugium on the Qinghai-Tibet Plateau revealed by the chloroplast DNA phylogeography of the alpine species Metagentiana striata (Gentianaceae). Bot J Linn Soc 157(1): 125-140.10.1111/j.1095-8339.2008.00785.xSearch in Google Scholar

DOSTALEK, T., Z. MUNZBERGOVA and I. PLACKOVA (2010): Genetic diversity and its effect on fitness in an endangered plant species. Conser Genet 11(3): 773-783.10.1007/s10592-009-9879-zSearch in Google Scholar

DUMOLIN, S., B. DEMESURE and R. J. PETIT (1995): Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theor Appl Genet 91: 1253-1256.10.1007/BF0022093724170054Search in Google Scholar

ECHT, C. S., S. SAHA, K. V. KRUTOVSKY, K. WIMALANATHAN, J. E. ERPELDING, C. LIANG and C. D. NELSON (2011): Anannotated genetic map of loblolly pine based on microsatellite and cDNA markers. BMC Genetics 12: 17.10.1186/1471-2156-12-17303814021269494Search in Google Scholar

ESPINOZA, S., C. R. MAGNI, V. MARTINEZ, W. GAPARE and C. CORDERO (2012): Genetic diversity and differentiation of Chilean plantations of Pinus radiata D. Don using microsatellite DNA markers. Silvae Genet 61: 221-228.10.1515/sg-2012-0028Search in Google Scholar

EXCOFFIER, L., P. E. SMOUSE and J. M. QUATTRO (1992): Analysis of molecular variance inferred from metric distance among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 176-191.10.1093/genetics/131.2.47912050201644282Search in Google Scholar

FAYARD, J, E. K. KLEIN and F. LEFEVRÈ (2009): Long distance dispersal and the fate of a gene from the colonization front. J Evol Biol 22: 2171-2182.10.1111/j.1420-9101.2009.01832.x20069723Search in Google Scholar

GAI, H. M. and M. REN (2011): DataTrans1.0, a software for microsatellite data processing based on Excel Macro. Fenzi Zhiwu Yuzhong 9: 1359-1365.Search in Google Scholar

GE, S. and D. Y. HONG (1994): The genetic diversity and its detection methods, pp. 123-140. In: The principle and method of biodiversity research, edited by Y. Q. QIAN and K. P. MA, Science and technology of China press, Beijing.Search in Google Scholar

GÄMPERLE, E. and J. J. SCHNELLER (2002): Phenotypic and isozyme variation in Cystopteris fragilis (Pteridophyta) along an altitudinal gradient in Switzerland. Flora 197: 203-213.10.1078/0367-2530-00031Search in Google Scholar

GUO, G., Z. S. LI, Q. B. ZHANG, K. P. MA and C. L. MU (2009): Dendroclimatological studies of Picea likiangensis and Tsuga dumosa in Lijiang, China. IAWA J 30: 435-441.10.1163/22941932-90000230Search in Google Scholar

HAHN, T., C. J. KETTLE, J. GHAZOUL, E. R. FREI, P. MATTER and A. R. PLUESS (2012): Patterns of genetic variation across altitude in three plant species of semi-dry grasslands. PLoS One 7(8): e41608.10.1371/journal.pone.0041608341159022870236Search in Google Scholar

HAMRICK, J. L. (2004): Response of forest trees to global environment changes. Forest Ecol Manag 197: 323-335.10.1016/j.foreco.2004.05.023Search in Google Scholar

HAMRICK, J. L, M. J. W. GODT and S. L. SHERMAN-BROYES (1995): Gene flow among plant population: Evidence from genetic markers, pp. 215-232. In: Experimental and Molecular Approaches to Plant Biosystematics, edited by C. H. PETER and A. G. STEPHOON, Missouri Botanical Garden, Saint Louis.Search in Google Scholar

HEWITT, G. M. (2004): Genetic consequences of climaticoscillations in the Quaternary. Philosophical Transactions of the Royal Society B: Biological Sciences, 359: 183-195.10.1098/rstb.2003.1388169331815101575Search in Google Scholar

HODGETTS, R. B., M. A. ALEKSIUK, A. BROWN, C. CLARKE, E. MACDONALD, S. NADEEM and D. KHASA (2001): Development of microsatellite markers for white spruce (Picea glauca) and related species. Theor Appl Genet 102: 1252-1258.10.1007/s00122-001-0546-0Search in Google Scholar

ISHIHAMA, F., S. UENO, Y. TSUMURA and I. WASHITANI (2005): Gene flow and inbreeding depression inferred from fine-scale genetic structure in an endangered heterostylous perennial, Primula sieboldii. Mol Ecol 14(4): 983-990.10.1111/j.1365-294X.2005.02483.x15773930Search in Google Scholar

KANG, B. Y, I. K. MANN, J. E. MAJOR and O. P. RAJORA (2010): Near-saturated and complete genetic linkage map of black spruce (Picea mariana). BMC Genomics 11: 515.10.1186/1471-2164-11-515299700920868486Search in Google Scholar

KIMURA, M. and J. F. CROW (1964): The number of alleles that can be Maintained in a finite population. Genetics 49: 725-738.10.1093/genetics/49.4.725121060914156929Search in Google Scholar

LEWONTIN, R. C. (1972): The apportionment of human diversity. Evol Biol 6: 381-398.10.1007/978-1-4684-9063-3_14Search in Google Scholar

LI, L., R. J. ABBOTT, B. B. LIU, Y. S. SUN, L. L. LI, J. B. ZOU, X. WANG, G. MIEHE and J. Q. LIU (2013): Pliocene intraspecific divergence and Plio-Pleistocene range expansions within Picea likiangensis (Lijiang spruce), a dominant forest tree of the Qinghai-Tibet Plateau. Mol Ecol 22(20): 5237-5255.10.1111/mec.1246624118118Search in Google Scholar

LIU, Q., Y. WU and N. WU (2003): Forest gap characteristicin a coniferous Picea likiangensis forest in the Yulong Snow Mountain Natural Reserve, Yunnan Province, China. Chin J Appl Ecol 14: 845-848.Search in Google Scholar

LU, Z., Y. WANG, X. ZHANG, H. KORPELAINEN and C. LI (2009): Genetic variation of isolated Picea balfouriana populations from the southeast of the Qinghai-Tibet Plateau. Ann Forest Sci 66: 607-613.10.1051/forest/2009052Search in Google Scholar

LYNCH, M. and B. G. MILLIGAN (1994): Analysis of population structure with RAPD markers. Mol Ecol 3: 91-99.10.1111/j.1365-294X.1994.tb00109.x8019690Search in Google Scholar

MCMAHON, S. M., S. P. HARRISON, W. S. ARMBRUSTER, P. J. BARTLEIN, C. M. BEALE, M. E. MELONI, M., D. PERINI and G. BINELLI (2007): The distribution of genetic variation in Norway spruce (Picea abies Karst.) populations in western Alps. J Biogeogr 34: 929-938.10.1111/j.1365-2699.2006.01668.xSearch in Google Scholar

MENG, L. H., R. YANG, R. J. ABBOTT, G. MIEHE, T. H. HU and J. Q. LIU (2007): Mitochondrial and chloroplast phylogeography of Picea crassifolia Kom. (Pinaceae) in the Qinghai-Tibetan Plateau and adjacent highlands. Mol Ecol 16(9): 4128-4137.Search in Google Scholar

MENTAL, N. A. (1967): The detection of disease clustering and generalized regression approach. Cancer Res 27: 209-220.Search in Google Scholar

MYERS, N., R. A. MITTERMEIER, C. G. MITTERMEIER, G. A. B. FONSECA and J. KENT (2000): Biodiversity hotspots for conservation priorities. Nature 403: 853-858.10.1038/3500250110706275Search in Google Scholar

NEI, M. (1973): Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70: 3321-3323.10.1073/pnas.70.12.33214272284519626Search in Google Scholar

OHSAWA, T. and Y. IDE (2008): Global patterns of geneic variation in plant species along vertical and horizontal gredients on mountains. Global Ecol Biogeogr 17: 152-163.10.1111/j.1466-8238.2007.00357.xSearch in Google Scholar

PEAKALL, R., S. GILMORE, W. KEYS, M. MORGANTE and A. Rafalski (1998): Cross species amplification of soybean (Glycine max) simple sequence repeats (SSRs) within the genus and other legume genera: implications for the transferability of SSRs in plants. Mol Biol Evol 15: 1275-1287.10.1093/oxfordjournals.molbev.a0258569787434Search in Google Scholar

PENG, X. L., C. M. ZHAO, G. L. WU and J. Q. LIU (2007): Genetic variation and phylogeographic history of Picea likiangensis revealed by RAPD markers. Trees 21: 457-464.10.1007/s00468-007-0138-ySearch in Google Scholar

PFEIFFER, A., A. M. OLIVERI and M. MORGANTE (1997): Identification and characterization of microsatellites in Norway spruce (Picea abies K.). Genome 40: 411-419.10.1139/g97-0559276931Search in Google Scholar

PLUESS, A. R. (2013): Pursuing glacier retreat: genetic structure of a rapidly expanding Larix decidua population. Mol Ecol 20: 473-485.10.1111/j.1365-294X.2010.04972.x21199030Search in Google Scholar

QUIROGA, M. P. and A. C. PREMOLI (2007): Genetic patterns in Podocarpus parlatorei reveal the long-term persistence of cold-tolerant elements in the southern Yungas. J Biogeogr 34: 447-455.10.1111/j.1365-2699.2006.01613.xSearch in Google Scholar

RAJORA, O. P., M. H. RAHMAN, S. DAYANANDAN and A. MOSSELER(2001): Isolation, characterization, inheritance and linkage of microsatellite DNA markers in white spruce (Picea glauca) and their usefulness in other spruce species. Mol Gen Genet 264: 871-882.10.1007/s00438000037711254135Search in Google Scholar

RUNGIS, D., Y. BÉRUBÉ, J. ZHANG, S. RALPH, C. E. RITLAND, B. E. ELLIS, C. DOUGLAS, J. BOHLMANN and K. RITLAND (2004): Robust simple sequence repeat markers for spruce (Picea spp.) from expressed sequence tags. Theor Appl Genet 109: 1283-1294.10.1007/s00122-004-1742-515351929Search in Google Scholar

SANGUINETTI, C. J., E. DIAS NETO and A. J. SIMPSON (1994): Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques 17: 914-921.Search in Google Scholar

SCOTTI, I., G. PAGLIA, F. MAGNI and M. MORGANTE (2006): Population genetics of Norway spruce (Picea abiesKarst.) at regional scale: sensitivity of different microsatellite motif classes in detecting differentiation. Ann For Sci 63: 485-491.10.1051/forest:2006029Search in Google Scholar

SHIMONO, A., X. R. WANG, T. TORIMARU, D. LINDGREN and B. KARLSSON (2011): Spatial variation in local pollen flow and mating success in a Picea abies clone archive and their implications for a novel „breeding without breeding“ strategy. Tree Genet Genomics 7: 499-509.10.1007/s11295-010-0351-5Search in Google Scholar

TOLLEFSRUD, M. M., J. H. SONSTEBO, C. BROCHMANN, O. JOHNSEN, T. SKROPPA and G. G. VENDRAMIN (2009): Combined analysis of nuclear and mitochondrial markers provide new insight into the genetic structure of North European Picea abies. Heredity 102: 549-562.10.1038/hdy.2009.1619259114Search in Google Scholar

TRUONG, C., A. E. PALME and F. FELBER (2007): Recent invasion of the mountain birch Betula pubescens ssp. tortuosa above the treeline due to climate change: genetic and ecological study in northern Sweden. J Evol Biol 20: 369-380.10.1111/j.1420-9101.2006.01190.x17210030Search in Google Scholar

UNGER, G. M., H. KONRAD and T. GEBUREK (2011): Does spatial genetic structure increase with altitude? An answer from Picea abies in Tyrol, Austria. Plant Syst Evol, 292: 133-141.10.1007/s00606-010-0407-xSearch in Google Scholar

VARSHNEY, R. K., A. GRANER and M. E. SORRELLS (2005): Genic microsatellite markers in plants: features and applications. Trends Biotechnol. 23: 48-55.10.1016/j.tibtech.2004.11.00515629858Search in Google Scholar

WANG, R., S. G. COMPTON and X. Y. CHEN (2011): Fragmentation can increase spatial genetic structure without decreasing pollen-mediated gene flow in a wind-pollinated tree. Mol Ecol 20: 4421-4432.10.1111/j.1365-294X.2011.05293.x21981067Search in Google Scholar

WANG, Y., J. LUO, X. XUE, H. KORPELAINEN and C. LI (2005): Diversity of microsatellite markers in the populations of Picea asperata originating from the mountains of China. Plant Sci 168: 707-714.10.1016/j.plantsci.2004.10.002Search in Google Scholar

WRIGHT, S. (1931): Evolution in Mendelian populations. Genetics 16: 97-159.10.1093/genetics/16.2.97120109117246615Search in Google Scholar

WU, J., K. V. KRUTOVSKII and S. H. STRAUSS (1998): Nuclear DNA diversity, population differentiation, and phylogenetic relationship in the California closed-cone pines based on RAPD and allozyme markers. Genome 42: 893-908.10.1139/g98-171Search in Google Scholar

YANG, F. S., Y. LI, X. I. N. DING and X. Q. WANG (2008): Extensive population expansion of Pedicularis longi - flora (Orobanchaceae) on the Qinghai-Tibetan Plateau and its correlation with the Quatemary climate change. Mol Ecol 17(23): 5135-5145.10.1111/j.1365-294X.2008.03976.x19017264Search in Google Scholar

YEH, F. C., R. YANG and T. BOYLE (1999): POPGENE VERSION 1.3.1. Microsoft Window-based free ware for population genetic analysis. University of Alberta Edmonton.Search in Google Scholar

ZHANG, F. M. and S. GE (2002): Data analysis in population genetics. I. analysis of RAPD data with AMOVA. Biodiversity Sci 10: 438-444.10.17520/biods.2002060Search in Google Scholar

ZHANG, Y. L., B. Y. LI and D. ZHENG (2002): A discussion on the boundary and area of the Tibetan Plateau in China. Geogr Res 21: 1-8.Search in Google Scholar

ZHAO, Z. J., L. Y. TAN, D. W. KANG, Q. J. LIU and J. Q. LI (2012): Responses of Picea likiangensis radial growth to climate change in the Small Zhongdian area of Yunnan Province, Southwest China. Chin J Appl Ecol 23: 603-609.Search in Google Scholar

ZOU, J. B., X. L. PENG, L. LI, J. Q. LIU, G. MIEHE and L. Opgenoorth (2012): Molecular phylogeography and evolutionary history of Picea likiangensis in the Qinghai- Tibetan Plateau in ferred from mitochondrial and chloroplast DNA sequence variation. J Syst Evol 50: 341-350.10.1111/j.1759-6831.2012.00207.xSearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo