1. bookVolume 57 (2008): Issue 1-6 (December 2008)
Journal Details
License
Format
Journal
eISSN
2509-8934
First Published
22 Feb 2016
Publication timeframe
1 time per year
Languages
English
access type Open Access

Spatial Genetic Structure Within Two Contrasting Stands of Scots Pine (Pinus sylvestris L.)

Published Online: 14 Oct 2017
Volume & Issue: Volume 57 (2008) - Issue 1-6 (December 2008)
Page range: 193 - 202
Received: 03 Jan 2007
Journal Details
License
Format
Journal
eISSN
2509-8934
First Published
22 Feb 2016
Publication timeframe
1 time per year
Languages
English
Abstract

When considering neutral nuclear markers, genetic differentiation of Scots pine (Pinus sylvestris L.) populations is known to be low. The homogeneity arises particularly as an effect of common ancestry in a recent evolutionary history as well as an extensive gene flow, especially through pollen. However, within populations several other forces may shape the spatial distribution of genetic variation, including establishment history, environmental and silvicultural selection. These local forces are known to produce non-random spatial patterns of genetic variation, however little is known on fine-scale spatial genetic structure of Scots pine. In this study, two stands of this species with different establishment histories, selected within one larger population located in northern Poland were genotyped and analysed for genetic variation and within-stand spatial genetic structure. Results revealed no differences in genetic variation, although stands are separated about 60 km, suggesting that the two populations share a common genetic pool. The spatial genetic structure in both stands was found to be slightly different and was attributed to differences in the mode of populations’ establishments. Finally, results confirmed that gene flow in Scots pine is extensive, causing genetic homogeneity within a single population.

Keywords

BURCZYK, J. (1996): Variance effective population size based on multilocus gamete frequencies in coniferous populations: an example of a Scots pine clonal seed orchard. Heredity 77: 74-82.10.1038/hdy.1996.110Open DOISearch in Google Scholar

BURCZYK , J. (1998): Mating system variation in a Scots pine clonal seed orchard. Silvae Genet. 47: 155-158.Search in Google Scholar

CHELIAK, W. M. and J. A. PITEL (1984); Techniques for starch gel electrophoresis of enzymes from fores tree species. Information Report PI-X-42 Petawawa National Forestry Institute.Search in Google Scholar

CHUNG, M. Y. and M. G. CHUNG (2004): Spatial genetic structure in populations of Quercus mongolica var. grosseserrata (Fagaceae) from southern Korea. Can. J. Bot. 82: 1402-1408.10.1139/b04-100Open DOISearch in Google Scholar

CLIFF, A. D. and J. K. ORD (1981): Spatial processes: Models and applications. London, Pion.Search in Google Scholar

CONKLE, M. T., P. D. HODGSKISS, L. B. NUNNALLY and S. C. HUNTER (1982): Starch gel electrophoresis of conifer seeds: a laboratory manual. USDA Forest Service, General Technica Report PSW-64, PSW-64, 18pp.10.2737/PSW-GTR-64Search in Google Scholar

DVORNYK, V. (2001): Genetic variability and differentiation of geographically marginal Scots pine populations from Ukraine. Silvae Genet. 50: 64-69.Search in Google Scholar

DVORNYK, V., A. SIRVIO, M. MIKKONEN and O. SAVOLAINEN (2002): Low nucleotide diversity at the pal1 locus in the wildly distributed Pinus sylvestris. Mol. Biol. Evol. 19: 179-188.10.1093/oxfordjournals.molbev.a00407011801746Open DOISearch in Google Scholar

ENGLAND, P. R., J.-M. CORNUET, P. BERTHIER, D. A. TALLMON and G. LUIKART (2006): Estimating effective population size from linkage disequilibrium: severe bias in small samples. Conservation Genetics 7: 303-308.10.1007/s10592-005-9103-8Open DOISearch in Google Scholar

EPPERSON, B. K. (1992): Spatial structure of genetic variation within populations of forest trees. New Forests 6: 257-278.10.1007/BF00120648Open DOISearch in Google Scholar

EPPERSON, B. K. (1995): Spatial Distributions of Genotypes Under Isolation by Distance. Genetics 140: 1431-1440.10.1093/genetics/140.4.143112067067498782Search in Google Scholar

EPPERSON, B. K. (2004): Multilocus estimation of genetic structure within populations. Theor. Pop. Biol. 65: 227-237.Search in Google Scholar

EPPERSON, B. K. (2005): Estimating dispersal from short distance spatial autocorrelation. Heredity 95: 7-15.10.1038/sj.hdy.680068015931252Search in Google Scholar

EPPERSON, B. K. and R. W. ALLARD (1989): Spatial autocorrelation analysis of the distribution of genotypes within populations of lodgepole pine. Genetics 121: 369-377.10.1093/genetics/121.2.36912036242731726Search in Google Scholar

EPPERSON, B. K. and M. G. CHUNG (2001): Spatial genetic structure of allozyme polymorphisms within populations of Pinus strobus (Pinaceae). American Journal of Botany 88: 1006-1010.10.2307/2657081Open DOISearch in Google Scholar

GEBUREK, T. (2005): Sexual reproduction in forest trees, pp. 171-198. In: Conservation and management of forest genetic resources in Europe, edited by T. GEBUREK and J. TUROK, Arbora Publishers, Zvolen.Search in Google Scholar

GONCHARENKO, G. G., V. E. PADUTOV and A. E. SILIN (1994a): Construction of genetic maps for some eurasian coniferous species using allozyme genes. Biochimical Genetics 32: 223-236.10.1007/BF005546247993376Search in Google Scholar

GONCHARENKO, G. G., V. E. PADUTOV and A. E. SILIN (1994b): Allozyme variation in natural populations of Eurasian pines. III. Population structure, diversity, differentiation and gene flow in central and isolated populations of Pinus sylvestris L. in Eastern Europe and Siberia. Silvae Genet. 43: 119-132.Search in Google Scholar

GONZALEZ-MARTINEZ, S. C., S. GERBER, S. CERVERA, J. M. MARTINEZ-ZAPATER, L. GIL and R. ALIA (2002): Seed gene flow and fine-scale structure in a Mediterranean pine (Pinus pinaster Ait.) using nuclear microsatellite markers. Theor. Appl. Genet. 104: 1290-1297.Search in Google Scholar

GOUDET, J. (1995): FSTAT (vers. 1.2): a computer program to calculate F-statistics. J. Hered. 86: 485-486.10.1093/oxfordjournals.jhered.a111627Search in Google Scholar

GULLBERG, U., R. YAZDANI, D. RUDIN and N. RYMAN (1985): Allozyme variation in Scots pine (Pinus sylvetris L.) in Sweden. Silvae Genet. 34: 193-201.Search in Google Scholar

HARDY, O. J. and X. VEKEMANS (1999): Isolation by distance in a continuous population: reconclination between spatial autocorrelation analysis and population genetics models. Heredity 83: 145-154.10.1046/j.1365-2540.1999.00558.x10469202Open DOISearch in Google Scholar

HUDSON, R. R. (1985): The sampling distribution of linkage disequilibrium under an infinite allele model without selection. Genetics 109: 611-631.10.1093/genetics/109.3.61112162913979817Search in Google Scholar

JONES, F. A., J. L. HAMRICK, C. J. PETERSON and E. R. SQUIERS (2005): Inferring colonization history from analyses of spatial genetic structure within populations of Pinus strobus and Quercus rubra. Mol. Ecol. 15: 851-861.10.1111/j.1365-294X.2005.02830.x16499707Open DOISearch in Google Scholar

KÄRKKÄINEN, K. and O. SAVOLAINEN (1993): The degree of early inbreeding depression determines the selfing rate at the seed stage: model and results from Pinus sylvestris (Scots pine). Heredity 71: 160-166.10.1038/hdy.1993.120Search in Google Scholar

KNOWLES, P., D. J. PERRY and H. A. FOSTER (1992): Spatial genetic structure in two tamatack (Larix laricina (Du Roi) K. Koch.) populations with differing establishment histories. Evolution 46: 572-576.10.1111/j.1558-5646.1992.tb02062.x28564037Open DOISearch in Google Scholar

KOELEWIJN, H. P., V. KOSKI and O. SAVOLAINEN (1999): Magnitude and timing of inbreeding depression in Scots pine (Pinus sylvestris L.). Evolution 53: 758-768.10.1111/j.1558-5646.1999.tb05370.x28565642Search in Google Scholar

LEONARDI, S. and P. MENOZZI (1996): Spatial structure of genetic variability in natural stands of Fagus sylvatica L. (beech) in Italy. Heredity 77: 359-368.10.1038/hdy.1996.154Search in Google Scholar

LI, C. C. and D. G. HORVITZ (1953): Some methods of estimating the inbreeding coefficient. Am. J. Hum. Genet. 5: 107-117.Search in Google Scholar

LINDGREN, D., L. PAULE, S. XIHUAN, R. YAZDANI, U. SEGERSTROM, J.-E. WALLIN and L. LEJDEBRO (1995): Can viable pollen carry Scots pine genes over long distances. Grana 34: 64-69.10.1080/00173139509429035Search in Google Scholar

LOISELLE, B. A., SORK, V. L., NASON, J. and GRAHAM, C. (1995): Spatial genetic structure of a tropical understorey shrub, Psychotria offcinalis (Rubiaceae). Am. J. Bot. 82: 1420-1425.10.2307/2445869Open DOISearch in Google Scholar

MITTON, J. B., M. C. GRANT and A. M. YOSHINO (1998): Variation in allozymes and stomatal size in pinyon (Pinus edulis, Pinaceae), associated with soil moisture. Am. J. Bot. 85: 1262-1265.10.2307/2446636Search in Google Scholar

MUONA, O. and A. HARJU (1989): Effective population sizes, genetic variability, and mating system in natural stands and seed orchards of Pinus sylvestris. Silvae Genet. 38: 221-228.Search in Google Scholar

NIEBLING, C. R., K. JOHNSON and H. D. GERHOLD (1987): Electrophoretic analysis of genetic linkage in Scots pine (Pinus sylvestris L.). Biochimical Genetics 25: 803-814.10.1007/BF005026003450273Search in Google Scholar

PARKER, K. C., J. L. HAMRICK, A. J. PARKER and J. D. NASON (2001): Fine-scale genetic structure in Pinus clausa (Pinaceae) populations: effects of disturbance history. Heredity 87: 99-113.10.1046/j.1365-2540.2001.00914.x11678992Search in Google Scholar

PEAKALL, R., M. RUIBAL and D. B. LINDENMAYER (2003): Spatial autocorrelation analysis offers new insights into gene flow in the Australian bush rat, Rattus fuscipes. Evolution 57: 1182-1195.10.1111/j.0014-3820.2003.tb00327.x12836834Open DOISearch in Google Scholar

PRUS-GL⁄ OWACKI, W., L. URBANIAK and M. ZUBROWSKA-GIL (1993): Allozyme differentiation in some european populations of Scots pine (Pinus sylvestris L.). Genetica Polonica 34: 159-176.Search in Google Scholar

PRUS-GL⁄ OWACKI, W. and B. R. STEPHAN (1994): Genetic variation of Pinus sylvestris from Spain in relation to other european populations. Silvae Genet. 43: 7-14.Search in Google Scholar

ROUSSET, F. (2000): Genetic differentiation between individuals. J. Evol. Biol. 13: 58-62.Search in Google Scholar

RUDIN, D. and I. EKBERG (1978): Linkage studies in Pinus sylvestris L. - using macro gametophyte allozymes. Silvae Genet. 27: 1-12.Search in Google Scholar

SHAPCOTT, A. (1995): The spatial genetic structure in natural populations of the Australian temperate rainforest tree Atherosperma moschatum (Labill) (Monimiaceae). Heredity 74: 28-38.10.1038/hdy.1995.4Open DOISearch in Google Scholar

SLATKIN, M. (1985): Gene flow in natural populations. Ann. Rev. Ecol. Syst. 16: 393-430.10.1146/annurev.es.16.110185.002141Open DOISearch in Google Scholar

SMOUSE, P. E. and R. PEAKALL (1999): Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 82: 561-573.10.1038/sj.hdy.688518010383677Open DOISearch in Google Scholar

SOKAL, R. R. and D. E. WARTENBERG (1983): A test of spatial autocorrelation analysis using an isolation-by-distance model. Genetics 105: 219-237.10.1093/genetics/105.1.219120214717246154Search in Google Scholar

SPIESS, E. B. (1989): Genes in populations. John Wiley & Sons, Inc., New York.Search in Google Scholar

STREIFF, R., T. LABBE, R. BACILIERI, H. STEINKELLNER, J. GLOSSL and A. KREMER (1998): Within-population genetic structure in Quercus robur L. and Quercus petraea (Matt.) Liebl. assessed with isozymes and microsatellites. Mol. Ecol. 7: 318-238.Search in Google Scholar

SZMIDT, A. E. and O. MUONA (1989): Linkage relationships of allozyme loci in Pinus sylvestris. Hereditas 111: 91-97.10.1111/j.1601-5223.1989.tb00382.xOpen DOISearch in Google Scholar

TAKAHASHI, M., M. MUKOUDA and K. KOONO (2000): Differences in genetic structure between two Japanese beech (Fagus crenata Blume) stands. Heredity 84: 103-115.10.1046/j.1365-2540.2000.00635.x10692017Search in Google Scholar

VEKEMANS, X. and O. J. HARDY (2004): New insights from fine-scale spatial genetic structure analyses in plant populations. Mol. Ecol. 13: 921-935.10.1046/j.1365-294X.2004.02076.x15012766Open DOISearch in Google Scholar

WAPLES, R. S. (1991): Genetic Methods for Estimating the Effective Size of Cetacean Populations. Rep. Int. Whal. Commn. 13: 279-300.Search in Google Scholar

WAPLES, R. S. (2006): A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conservation Genetics 7: 167-184.10.1007/s10592-005-9100-yOpen DOISearch in Google Scholar

WASIELEWSKA, M., M. KLEMM and J. BURCZYK (2005): Genetic diversity and mating system of Scots pine plus trees. Dendrobiology 53: 57-62.Search in Google Scholar

WEIR, B. S. and W. G. HILL (1980): Effect of mating structure on variation in linkage disequilibrium. Genetics 95: 477-488.10.1093/genetics/95.2.47712142417203003Search in Google Scholar

WRIGHT, S. (1943): Isolation by distance. Genetics 28: 114-138.\10.1093/genetics/28.2.114120919617247074Search in Google Scholar

YAZDANI, R., O. MUONA, D. RUDIN and A. SZMIDT (1985): Genetic structure of a Pinus sylvestris L. seed-tree stand and naturally regenerated understory. Forest Sci. 31: 430-436.Search in Google Scholar

YAZDANI, R., D. LINDGREN and S. STEWART (1989): Gene dispersion within a population of Pinus sylvestris. Scand. J. For. Res. 4: 295-306.10.1080/02827588909382567Open DOISearch in Google Scholar

YAZDANI, R. and D. LINDGREN (1992): Gene dispersion after natural regeneration under a widely-spaced seedtree stand of Pinus sylvestris (L.). Silvea Genet. 41: 1-5.Search in Google Scholar

YEH, F. C., R.-C. YANG, T. B. J. BOYLE, Z.-H. YE and J. X. MAO (1997): POPGENE, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Canada.10.1023/A:1005764702510Open DOISearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo