1. bookVolume 54 (2005): Issue 1-6 (December 2005)
Journal Details
First Published
22 Feb 2016
Publication timeframe
1 time per year
access type Open Access

Evolution of Genome Size in Conifers

Published Online: 19 Oct 2017
Volume & Issue: Volume 54 (2005) - Issue 1-6 (December 2005)
Page range: 126 - 137
Received: 09 Jun 2005
Journal Details
First Published
22 Feb 2016
Publication timeframe
1 time per year

Conifers are the most widely distributed group of gymnosperms in the world. They have large genome size (1C-value) compared with most animal and plant species. The genome size ranges from ~6,500 Mb to ~37,000 Mb in conifers. How and why conifers have evolved such large genomes is not understood. The conifer genome contains ~75% highly repetitive DNA. Most of the repetitive DNA is composed of non-coding DNA, including ubiquitous transposable elements. Conifers have relatively larger rDNA repeat units, larger gene families generated by gene duplications, larger nuclear volume, and perhaps larger genes, as compared to angiosperm plants. These genomic components may partially account for the large genome size, as well as variation in genome size, in conifers. One of the major mechanisms for genome size expansion and evolution of species is polyploidy, which is widespread in angiosperms, but it is rare in conifers. There are only a few natural polyploids in one family of conifers, Cupressaceae. Other conifers, including well-studied pines, are nearly all diploids. Whether ancient polyploidy has played a role in the evolution of genome size in conifers still remains an open question. The mechanisms that account for the variation and evolution of genome size in conifers are addressed in this review.


ADAMS, M. C., S. E. CELNIKER and R. A. HOLT et al. (2000): The genome sequence of Drosophila melanogaster. Science 287: 2185-2195.10.1126/science.287.5461.218510731132Search in Google Scholar

AHUJA, M. R. (2001): Recent advances in molecular genetics of forest trees. Euphytica 121: 173-195.10.1023/A:1012226319449Search in Google Scholar

AHUJA, M. R. (2005): Polyploidy in gymnosperms: Revisited. Silvae Genet. 54: 59-69.10.1515/sg-2005-0010Search in Google Scholar

AHUJA, M, R., M. E. DEVEY, A. T. GROVER, K. D. JERMSTAD and D. B. NEALE (1994): Mapped DNA probes from loblolly pine can be used for restriction fragment length polymorphism mapping in other conifers. Theor. Appl. Genet. 88: 279-282.Search in Google Scholar

AHUJA, M. R. and D. B. NEALE (2002): Origins of polyploidy in coast redwood (Sequoia sempervirens (D. Don) Endl.) and relationship of coast redwood to other genera of Taxodiaceae. Silvae Genet. 51: 93-100.Search in Google Scholar

AUKLAND, L. D., J. S. JOHNSTON, H. J. PRICE and F. E. BRIDGEWATER (2001): Stability of nuclear DNA content among divergent and isolated populations of Fraser fir. Can. J. Bot. 79: 1375-1378.10.1139/cjb-79-11-1375Search in Google Scholar

BALAKIREV, E. and F. J. AYALA (2003): Pseudogenes: Are they “junk” or functional DNA? Annu. Rev. Genet. 37: 123-151.10.1146/annurev.genet.37.040103.10394914616058Search in Google Scholar

BENNETT, M. D. and I. J. LEITCH (2003): Angiosperm DNA C-values database. http://www.rbgkew.org.uk/cval/homepage.html.Search in Google Scholar

BENNETT, M. D. and I. J. LEITCH (2005): Plant genome size research: A field in focus. Ann. Bot. 95: 1-6.Search in Google Scholar

BENNETT, M. D. and J. B. SMITH (1991): Nuclear DNA amounts in angiosperms. Phil. Trans. R. Soc. Lond. B. 334: 309-345.Search in Google Scholar

BENNETT, M. D., I. J. LEITCH and L. HANSON (1998): DNA amounts in two samples of angiosperm weeds. Ann. Bot. 82 (Supplement A): 121-134.10.1006/anbo.1998.0785Search in Google Scholar

BENNETT, M. D., I. J. LEITCH, H. J. PRICE and J. S. JOHNSON (2003): Comparisons with Caenorhabditis (~100 Mb) and Drosophila (~175 Mb) using flow cytometry show genome size in Arabidopsis to be ~157 Mb and thus ~25 % larger than the Arabidopsis Genome Initiative estimate of ~125 MB, Ann. Bot. 91: 547-557.10.1093/aob/mcg057424224712646499Search in Google Scholar

BENNETZEN, J. L. (2002): Mechanisms and rates of genome expansion and contraction in flowering plants. Genetica 115: 29-36.10.1023/A:1016015913350Search in Google Scholar

BENNETZEN, J. L. and E. A. KELLOGG (1997): Do plants have a one-way ticket to genomic obesity? Plant Cell 9: 1509-1514.10.1105/tpc.9.9.150915702912237393Open DOISearch in Google Scholar

BENNETZEN, J. L., J. MA and K. M. DEVOS (2005): Mechanisms of recent genome size variation in flowering plants. Ann. Bot. 95: 127-132.Search in Google Scholar

BERLYN, G. P., J. L. ROYTE and A. O. ANOROU (1990): Cytophotometric differentiation of high elevation spruces: physiological and ecological implications. Stain Tech. 65: 1-14.10.3109/105202990091056022360212Search in Google Scholar

BLANC, G. and K. H. WOLFE (2004): Widespread paleopolyploidy in model plant species inferred from age distribution of duplicate genes. Plant Cell 16: 1667-1678.10.1105/tpc.02134551415215208399Open DOISearch in Google Scholar

BOBOLA, M. S., D. E. SMITH and A. S. KLEIN (1992): Five major nuclear ribosomal repeats represent a large and variable fraction of the genomic DNA of Picea rubens and P. mariana. Mol. Biol. Evol. 9: 125-137.Search in Google Scholar

BOWE, L. M., G. COAT and C.W. DEPAMPHILIS (2000): Phylogeny of seed plants based on all three genomic compartments: Extant gymnosperms are monophyletic and Gnetales’ closest relatives are conifers. Proc. Nat. Acad. Sci. USA 97: 4092-4097.10.1073/pnas.97.8.40921815910760278Open DOISearch in Google Scholar

BROWN, G. R., C. H. NEWTON and J. E. CARLSON (1998): Organization and distribution of a Sau3A tandem repeated DNA sequence in Picea (Pinaceae) species. Genome 41: 560-565.10.1139/g98-054Open DOISearch in Google Scholar

BROWN, G. R., E. E. KADEL and D. I. BASSONI et al. (2001): Anchored reference loci in loblolly pine (Pinus taeda L.) for integrating pine genomics. Genetics 159: 799-809. 10.1093/genetics/159.2.799146182111606554Search in Google Scholar

BURLEY, J. (1965): Karyotype analysis of Sitka spruce, Picea sitchensis (Bong.) Carr. Silvae Genet. 14: 127-132.Search in Google Scholar

CAVALLINI, A., I. NATALI, G. CIONINI and D. GENNAI (1993): Nuclear DNA variability within Pisum sativum (Leguminoseae): nucleotypic effects on plant growth. Heredity 70: 561-565.10.1038/hdy.1993.82Open DOISearch in Google Scholar

CAUSSE, M. A., T. M. FULTON and Y. G. CHO et al. (1994): Saturated molecular map of rice genome based on as interspecific backcross population. Genetics 138: 1251-1274. 10.1093/genetics/138.4.125112062617896104Search in Google Scholar

CHAW, S.-M., C. L. PARKINSON, Y. CHENG, T. M. VINCENT and J. D. Palmer (2000): Seed plant phylogeny inferred from all three plant genomes: Morphology of extant gymnosperms and origin of Gnetales from conifers. Proc. Nat. Acad. Sci. USA 97: 4086-4091.10.1073/pnas.97.8.40861815710760277Open DOISearch in Google Scholar

CULLIS, C. A., G. P. GRIESSEN, S. W. GORMAN and R. D. TEASDALE (1988): The 25S, 18S, and 5S ribosomal RNA genes from Pinus radiata D. Don. In: Molecular Genetics of Forest Trees. Proc. 2nd Workshop IUFRO Working Party s2.04.06. CHELIAK, W. M. and YAPA, A. C. (Eds). Canadian Forestry Service PNFI Inf. Rep. PI-X-80, pp. 34-40.Search in Google Scholar

DELEVORYAS, T. (1980): Polyploidy in gymnosperms. In: Polyploidy - Biological Relevance. LEWIS, W. H. (Ed). Plenum Press, New York, pp. 215-218.10.1007/978-1-4613-3069-1_12550825Search in Google Scholar

DE LUC, A., R. A. ADAMS and M. ZHANG (1999): Using random amplification of polymorphic DNA for taxonomic evaluation of Pfitzer Juniperus. HortScience 34: 1123-1125.10.21273/HORTSCI.34.6.1123Search in Google Scholar

DEVEY, M. E., T. A. FIDDLER, B.-H. LIU, S. J. KNAPP and D. B. NEALE (1994): An RFLP linkage map for loblolly pine based on three generation outbred pedigree. Theor. Appl. Genet. 88: 273-278.Search in Google Scholar

DEUTSCH, M. and M. LONG (1999): Intron-exon structure of eukaryotic model organisms. Nucleic Acid Res. 27: 3219-3228.10.1093/nar/27.15.321914855110454621Search in Google Scholar

DHILLON, S. S. (1987): DNA in tree species. In: Cell and Tissue Culture in Forestry. Vol. 1. BONGA, J. M. and10.1007/978-94-017-0994-1_18Search in Google Scholar

DURZAN, D. J. (Eds). Martinus Nijhoff Publishers, Dordrecht, pp. 298-313.Search in Google Scholar

DHIR, N. K. and J. P. MIKSCHE (1974): Intraspecific variation of nuclear DNA content in Pinus resinosa Ait. Can. J. Genet. Cytol. 16: 77-83.10.1139/g74-007Open DOISearch in Google Scholar

DIETRICH, F. S., S. VOEGELI, S. BRACHAT et al. (2004): The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome. Science 304: 304-307.10.1126/science.1095781Open DOISearch in Google Scholar

DREWRY, A. (1988): The G-banded karyotype of Pinus resinosa Ait. Silvae Genet. 37: 218-221.Search in Google Scholar

ECHT, C. S. and P. MAY-MARQUARDT (1997): Survey of microsatellite DNA in pine. Genome 40: 9-17.10.1139/g97-002Open DOISearch in Google Scholar

ELSIK, C. G. and C. G. WILLIAMS (2000): Retroelements contribute to the excess of low-cop number DNA in pine. Mol. Genet. Genomics 264: 47-55.Search in Google Scholar

ELSIK, C. G. and WILLIAMS, C. G. (2001): Families of clustered microsatellites in a conifer genome. Mol. Genet. Genomics 265: 535-542.Search in Google Scholar

FARJON, A. (1998): World Checklist and Bibliography of Conifers. The Royal Botanic Garden, Kew.Search in Google Scholar

FESCHOTTE, C., N. JIANG and S. R. Wessler (2002): Plant transposable elements: where genetics meets genomics. Nature Rev. Genet. 3: 329-341.10.1038/nrg793Open DOISearch in Google Scholar

FINNEGAN, D. J. (1989): Eukaryotic transposable elements and genome evolution. Trends Genet. 5: 103-107. 10.1016/0168-9525(89)90039-5Open DOISearch in Google Scholar

FISHER, R. A. (1935): The sheltering of lethals. Am. Nat. 69: 446-455.Search in Google Scholar

FLAVELL, R. (1986): The structure and control of expression of ribosomal RNA genes. Oxford Surv. Plant Mol. Biol. 3: 251-274. Search in Google Scholar

FORCE, A., M. LYNCH, F. B. PICKETT, A. AMORES, Y. YAN and J. POSTLETHWAIT (1999): Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151: 1531-1545.10.1093/genetics/151.4.1531146054810101175Search in Google Scholar

FRIESEN, N., A. BRANDES and J. S. HESLOP-HARRISON (2001): Diversity, origin and distribution of retrotransposons (gypy and copia) in conifers. Mol. Biol. Evol. 18: 1176-1188.10.1093/oxfordjournals.molbev.a00390511420359Open DOISearch in Google Scholar

GAUT, B. S. (2001): Patterns of chromosomal duplication in maize and their implications for comparative maps of grasses. Genome Res. 11: 55-66.10.1101/gr.16060131101411156615Search in Google Scholar

GAUT, B. S. and J. F. DOEBLEY (1997): DNA sequence evidence for the segmental allotetraploid origin of maize. Proc. Natl. Acad. Sci. USA 94: 6809-6814.10.1073/pnas.94.13.68092124011038553Open DOISearch in Google Scholar

GIBSON, T. J. and J. SPRING (2000): Evidence in favor of ancient octoploidy in the vertebrate genome. Biochem Soc. Tans. 28: 259-264.10.1042/bst028025910816139Open DOISearch in Google Scholar

GILL, G. P., G. R. BROWN and D. B. NEALE (2003): A sequence mutation in the cinamyl alcohol dehydrogenase gene associated with altered lignification in loblolly pine. Plant Biotech. J. 1: 253-258.Search in Google Scholar

GOFF, S. A., D. RICKE and T.-H. LAN et al. (2002): A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296: 92-100.10.1126/science.106827511935018Search in Google Scholar

GOVINDRAJU, D. R. and C. A. CULLIS (1992): Ribosomal DNA variation among populations of Pinus rigida Mill. (patch pine) ecosystem. I. Distribution of copy numbers. Heredity 69: 133-140.10.1038/hdy.1992.106Search in Google Scholar

GRAHAM, M. J., C. D. NICKELL and A. L. RAYBURN (1994): Relationship between genome size and maturity group in soybean. Theor. Appl. Genet. 88: 429-432.Search in Google Scholar

GRANT, V. (1981): Plant Speciation. (Second Edition). Columbia University Press, New York.10.7312/gran92318Search in Google Scholar

GRATTAPAGLIA, D. and H. D. BRADSHAW (1994): Nuclear DNA amounts of commercially important Eucalyptus species. Can. J. For. Res. 24: 1074-1078.Search in Google Scholar

GREGORY, T. R. (2001): Animal genome size database. http://www.genomesiz.com.Search in Google Scholar

GREGORY, T. R. (2005): The C-value enigma in plants and animals: A review of parallels and an appeal for partenership. Ann. Bot. 95: 133-146.Search in Google Scholar

GROTKOPP, E., M. REJÁNEK, M. J. SANDERSON and T. L. ROST (2004): Evolution of genome size in pines (Pinus) and its life-history correlates: supertree analyses. Evolution 58: 1705-1729.10.1111/j.0014-3820.2004.tb00456.x15446425Open DOISearch in Google Scholar

GUGERLI, F., C. SPERISON and U. BÜCHLER et al. (2001): The evolutionary split of Pinaceae from other conifers: Evidence from an intron loss and a multigene phylogeny. Mol. Phylogenet. Evol. 21: 167-175.10.1006/mpev.2001.100411697913Open DOISearch in Google Scholar

HAIR, J. B. (1968): The chromosomes of the Cupressaceae. I. Tetraclineae and Actinostrobeae (Callitroideae). New Zealand J. Bot. 6: 277-284.Search in Google Scholar

HALDANE, J. B. S. (1933): The part played by recurrent mutations in evolution. Am. Nat. 67: 5-9.Search in Google Scholar

HANCOCK, J. M. (2002): Genome size and accumulation of simple sequence repeats: Implications of new data from genome sequencing projects. Genetica 115: 93-103.10.1023/A:1016028332006Search in Google Scholar

HIZUME, M., T. KONDO, F. SHIBATA and R. ISHIZUKU (2001): Flow cytometric determination of genome size in the Taxodiaceae, Cupressaceae sensu stricto and Sciadopityaceae. Cytologia 66: 307-311.10.1508/cytologia.66.307Open DOISearch in Google Scholar

HIZUME, M., F. SHIBATA, Y. MATSUSAKI and Z. GARAJOVA (2002): Chromosome identification and comparative karyotype analysis of four Pinus species. Theor. Appl. Genet. 105: 491-497.Search in Google Scholar

HUGHES, A. L. (1999): Phylogenies of developmentally important proteins do not support the hypothesis of two rounds of duplication early in vertebrate history. J. Mol. Biol. 48: 565-578.10.1007/PL0000649910198122Search in Google Scholar

International Human Genome Sequencing Consortium. (2001): Initial sequencing and analysis of human genome. Nature 409: 860-921.10.1038/3505706211237011Search in Google Scholar

JOYNER, K. L., X.-R. WANG, J. S. JOHNSTON, H. J. PRICE and C. G. WILLIAMS (2001): DNA content for Asian pines parallels new world relatives. Can. J. Bot. 79: 192-196.10.1139/cjb-79-2-192Search in Google Scholar

KALENDAR, R., J. TANKSKANEN, S. IMMONEN, E. NEVO and A. H. SCHULMAN (2000): Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc. Natl. Acad. Sci. USA 97: 6603-6607. 10.1073/pnas.110587497Search in Google Scholar

KAMM, A., R. L. DOUDRICK, J. S. HESLOP- ARRISON and T. SCHMIDT (1996): The genomic and physical organization of Ty1-Copia-like sequences as a component of large genomes in Pinus elliottii var. elliottii and other gymnosperms. Proc. Natl. Acad. Sci. USA 93: 2708-2713.10.1073/pnas.93.7.2708Search in Google Scholar

KARVONEN, P., M. KARJALAINEN and O. SOVOLAINEN (1993): Ribosomal RNA genes in Scots pine (Pinus sylvestris L.): chromosomal organization and structure. Genetica 88: 59-68.10.1007/BF02424452Search in Google Scholar

KAVARNHEDEN, A., V. A. ALBERT and P. ENGSTROM (1998): Molecular evolution of cdc2 pseudogene in spruce (Picea). Plant Mol. Biol. 36: 767-774.Search in Google Scholar

KHOSHOO, T. N. (1959): Polyploidy in gymnosperms. Evolution 13: 24-39. 10.1111/j.1558-5646.1959.tb02991.xSearch in Google Scholar

KHOSHOO, T. N. (1961): Chromosome numbers in gymnosperms. Silvae Genet. 10: 1-9.Search in Google Scholar

KIDWELL, M. G. (2002): Transposable elements and evolution of genome size in eukaryotes. Genetica 115: 49-63.10.1023/A:1016072014259Search in Google Scholar

KIM, J. M., S. VANGURI, J. D. BOEKE and D. F. VOYTAS (1998): Transposable elements and genome organization: A comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res. 8: 464-478. 10.1101/gr.8.5.464Search in Google Scholar

KINLAW, C. S., D. E. HARRY and R. R. SEDEROFF (1990): Isolation and characterization of alcohol dehydrogenase cDNA from Pinus radiata. Can. J. For. Res. 20: 1343-1350.Search in Google Scholar

KINLAW, C. S. and D. B. NEALE (1997): Complex gene families in pine genomes. Trends Plant Sci. 2: 356-359.10.1016/S1360-1385(97)84624-9Open DOISearch in Google Scholar

KNIGHT, C. A., N. A. MOLINARI and D. A. PETROV (2005): The large genome constraint hypothesis: Evolution, ecology and phenotype. Ann. Bot. 95: 177-190.Search in Google Scholar

KOSSACK, D. S. and C. S. KINLAW (1999): IFG, a gypsy-like retrotransposon in Pinus (Pinaceae) has an extensive history in pines. Plant Mol. Biol. 39: 417-426.Search in Google Scholar

KRIEBEL, H. B. (1985): DNA sequence components of the Pinus strobus nuclear genome. Can. J. For. Res. 15: 1-4.Search in Google Scholar

KRIEBEL, H. B. (1993): Molecular structure of forest trees. In: Clonal Forestry I. Genetics and Biotechnology. AHUJA, M. R. and LIBBY, W. J. (Eds). Springer Verlag, Berlin, pp. 224-240. 10.1007/978-3-642-84175-0_14Search in Google Scholar

KRUTOVSKY, K.V., M. TROGGIO, G. R. BROWN, K. D. JERMSTAD and D. B. NEALE (2004): Comparative mapping in Pinaceae. Genetics 168: 447-461.10.1534/genetics.104.028381144810815454556Search in Google Scholar

KUMAR, A. and J. L. BENNETZEN (1999): Plant retrotransposons. Annu. Rev. Genet. 33: 479-532.10.1146/annurev.genet.33.1.479Open DOISearch in Google Scholar

EL-LAKANY, M. H. and O. SZIKLAI (1971): Intraspecific variation in nuclear characteristics of Douglas-fir. Advan. Front. Plant Sci. 28: 363-378.Search in Google Scholar

LEITCH, I. J. and M. D. BENNETT (2002): New insights into patterns of nuclear genome size evolution in plants. Current Genomics 3: 551-562.10.2174/1389202023350183Open DOISearch in Google Scholar

LEITCH, I. J. and M. D. BENNETT (2004): Genome downsizing in polyploid plants. Biol. J. Linnean Soc. 82: 651-663.10.1111/j.1095-8312.2004.00349.xOpen DOISearch in Google Scholar

LEITCH, I. J., L. HANSON, M. WINFIELD, J. PARKER and M. D. BENNETT (2001): Nuclear DNA C-values complete familial representation in gymnosperms. Ann. Bot. 88: 843-849.Search in Google Scholar

LEITCH, I. J., D. E. SOLTIS, P. S. SOLTIS and M. D. BENNETT (2005): Evolution of DNA amounts across land plants (Embryophyta). Ann. Bot. 95: 207-217.Search in Google Scholar

L’HOMME, Y., A. SÉGUIN and F. M. TREMBLAY (2000): Different classes of retrotransposons in coniferous spruce species. Genome 43: 1084-1089. 10.1139/g00-077Search in Google Scholar

LONG, E. O. and I. B. DAWID (1980): Repeated genes in eukaryotes. Annu. Rev. Biochem. 49: 727-764.Search in Google Scholar

LYNCH, M. (2002): Gene duplication and evolution. Science 297: 945-947.10.1126/science.1075472Search in Google Scholar

LYNCH, M. and J. S. CONERY (2000): The evolutionary fate and consequences of duplicate genes. Science 290: 1151-1155.10.1126/science.290.5494.1151Search in Google Scholar

MAKALOWSKI, W. (2001): Are we polyploids? A brief history of one hypothesis. Genome Research 11: 667-670. 10.1101/gr.188801Open DOISearch in Google Scholar

MARTIN, A. P. (1999): Increasing genomic complexity by gene duplication and origin of vertebrates. Am. Nat. 154: 111-128.Search in Google Scholar

MARTIN, A. (2001): Is tetralogy true? Lack of support for the ‘one-to-four’ rule. Mol. Biol. Evol. 18: 89-93.10.1093/oxfordjournals.molbev.a003723Open DOISearch in Google Scholar

MASTERSON, J. (1994): Stomatal size in fossil plants: Evidence for polyploidy in majority of angiosperms. Science 264: 421-423.10.1126/science.264.5157.421Search in Google Scholar

MCCLURE, M. A. (1999): The retroid agents: disease, function and evolution. In: Origin and Evolution of Viruses.Search in Google Scholar

DOMINGO, E., WEBSTER, R. and HOLLAND, J. (Eds). Academic Press, London, pp. 163-195.Search in Google Scholar

MCLYSAGHT, A., L. ENRIGHT, L. SKRABANEK and K. H. WOLFE (2000): Estimation of synteny conservation and genome compaction between pufferfish (Fugu) and human. Yeast 17: 22-36.10.1002/(SICI)1097-0061(200004)17:1<22::AID-YEA5>3.0.CO;2-SSearch in Google Scholar

MCLYSAGHT, A., K. HOKAMP and K. H. WOLFE (2002): Extensive genomic duplication during early chordate evolution. Nature Genetics 31: 200-204.10.1038/ng88412032567Open DOISearch in Google Scholar

MERGEN, F. and B. A. THIELGES (1967): Intraspecific variation in nuclear volume in four conifers. Evolution 21: 720-724.10.1111/j.1558-5646.1967.tb03429.x28563067Open DOISearch in Google Scholar

MIKSCHE, J. P. (1968): Quantitative study of intraspecific variation of DNA per cell in Picea glauca and Pinus banksiana. Can. J. Genet. Cytol. 10: 590-600.Search in Google Scholar

MIKSCHE, J. P. (1971): Intraspecific variation of DNA per cell between Picea sitchensis (Bong.) Carr. provenances. Chromosoma 32: 343-352.10.1007/BF002852485573671Search in Google Scholar

MIKSCHE, J. P. and Y. HOTTA (1973): DNA base composition and repetitious DNA in several conifers. Chromosoma 41: 29-36. 10.1007/BF00284072Open DOISearch in Google Scholar

MILLAR, C. I. (1998): Early evolution of pines. In: Ecology and Biogeography of Pinus. RICHARDSON, D. M. (Ed). Cambridge University Press, Cambridge, pp. 69-91.Search in Google Scholar

MILLER, C. N. (1977): Mesozoic conifers. Bot. Rev. 43: 217-280. Search in Google Scholar

MIROV, N. T. (1967): The Genus Pinus. Ronald Press, New York.Search in Google Scholar

MORIYAMA, E. N., D. A. PETROV and D. L. HARTL (1998): Genome size and intron size in Drosophila. Mol. Biol. Evol. 15: 770-773.10.1093/oxfordjournals.molbev.a0259809615458Open DOISearch in Google Scholar

MURRAY, B. G. (1998): Nuclear DNA amounts in gymnosperms. Ann. Bot. 82 (Supplement A): 3-15.10.1006/anbo.1998.0764Search in Google Scholar

MURRAY, B. G., N. FRIESEN and J. S. HESLOP-HARRISSON (2002): Molecular cytogenetic analysis of Podocarpus and comparison with other gymnosperm species. Ann. Bot. 89: 483-489.Search in Google Scholar

NEALE, D. B. and K.V. KRUTOVSKY (2004): Comparative genome mapping in trees: The group of conifers. In: Biotechnology in Agriculture and Forestry. Vol. 55. Molecular Marker Systems. LÖRZ, H. and WENZEL, G. (Eds). Springer Verlag, Berlin, pp. 267-277.Search in Google Scholar

NEWTON, R. J., M. G. MESSINA, H. J. PRICE and I. WAKAMIYA-NOBORI (1999): DNA content, water relations, and environmental stress in gymnosperms. In: Handbook of Plant and Crop Stress. Second Edition. PRESSARAKLI, M. (Ed). Marcel Decker, New York, pp. 659-673.10.1201/9780824746728.ch31Search in Google Scholar

OBERMAYER, R., I. J. LEITCH, L. HANSON and M. D. BENNETT (2002): Nuclear DNA C-values in 30 species double the estimated familial representation in pteridophytes. Ann. Bot. 90: 209-217.Search in Google Scholar

OHNO, S. (1970): Evolution by Gene Duplication. Springer Verlag, Berlin.10.1007/978-3-642-86659-3Search in Google Scholar

OHRI, D. (1998): Genome size variation and plant systematic. Ann. Bot. 82 (Supplement A): 75-83.10.1006/anbo.1998.0765Search in Google Scholar

OHRI, D. and M. R. AHUJA (1990): Giemsa C-banded karyotype in Quercus L. (oak). Silvae Genet. 39: 216-219. Search in Google Scholar

OHRI, D., and T. N. KHOSHOO (1986): Genome size in gymnosperms. Pl. Syst. Evol. 153: 119-132.Search in Google Scholar

OHTA, T. (1990): How gene families evolve. Theor. Pop. Biol. 37: 213-219.Search in Google Scholar

OTTO, S. P. and WHITTON, J. (2000): Polyploidy incidence and evolution. Annu. Rev. Genet. 34: 401-437.10.1146/annurev.genet.34.1.40111092833Open DOISearch in Google Scholar

PATERSON, A. H., J. E. BOWERS and B. A. CHAPMAN (2004): Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc. Nat. Acad. Sci. USA 101: 903-998.10.1073/pnas.0307901101Search in Google Scholar

PERRY, D. L. and G. R. FURNIER (1996): Pinus banksiana has at least seven expressed alcohol dehydrogenase genes in two linked groups. Proc. Natl, Acad. Sci. USA 93: 13020-13023.10.1073/pnas.93.23.13020Open DOISearch in Google Scholar

PETROV, D. A. (2001): Evolution of genome size: Newapproaches to an old problem. Trends Genet. 17: 23-28.10.1016/S0168-9525(00)02157-0Search in Google Scholar

PREMOLI, A. C., T. KITZBERGER and T. T. VEBELEN (2000): Conservation genetics of the endangered conifer Fitzroya cupressoides in Chile and Argentina. Conservation Genet. 1: 57-66. 10.1023/A:1010181603374Search in Google Scholar

PRICE, H. J. (1988): DNA content variation among higher plants. Ann. Missouri Bot. Garden 75: 1248-1257.Search in Google Scholar

PRINCE, V. E. and F. B. PICKETT (2002): Splitting pairs: The diverging fates of duplicate genes. Nature Rev. Genet. 3: 827-837.10.1038/nrg92812415313Open DOISearch in Google Scholar

PROKOPOWICH, C. D., T. R. GREGORY and T. J. CREASE (2003): The correlation between rDNA copy number and genome size in eukaryotes. Genome 46: 48-50.10.1139/g02-10312669795Search in Google Scholar

RAKE, A.V., J. P. MIKSCHE, R. B. HALL and K. M. HANSEN (1980): DNA reassocitation kinetics of four conifers. Can. J. Genet. Cytol. 22: 69-79.Search in Google Scholar

RAMSEY, J. and D. W. SCHEMSKE (2002): Neoplolyploidy in flowering plants. Annu. Rev. Ecol. Syst. 33: 589-639.10.1146/annurev.ecolsys.33.010802.150437Open DOISearch in Google Scholar

RAYBURN, A. L., H. J. PRICE, J. D. SMITH and J. R. GOLD (1985): C-band heterochromatin and DNA content in Zea mays. Am. J. Bot. 72: 1610-1617.10.1002/j.1537-2197.1985.tb08425.xSearch in Google Scholar

ROGERS, S. O. and A. J. BENDICH (1987): Ribosomal RNA genes in plants: variability in copy number and in the intergenic spacers. Plant Mol. Biol. 9: 509-520.10.1007/BF0001588224277137Open DOISearch in Google Scholar

RUBIN, G. M., M. D. YANDELL and J. R. WORTMAN et al. (2000): Comparative genomic of the eukaryotes. Science 287: 2204-2215.10.1126/science.287.5461.2204275425810731134Search in Google Scholar

SANKOFF, D. (2001): Gene and genome duplication. Curr. Opin. Genet. Dev. 11: 681-684.10.1016/S0959-437X(00)00253-7Open DOISearch in Google Scholar

SANMIGUEL, P., A. TIKHONOV and Y.-K. JIN et al. (1996): Nested retrotransposons in the intergenic regions of the maize genome. Science 274: 765-768.10.1126/science.274.5288.765Search in Google Scholar

SANMIGUEL, P. and J. L. BENNETZEN (1998): Evidence that a recent increase in maize genome size was caused by the massive amplification of intergenic retrotransposons. Ann. Bot. 82 (Supplement A): 37-44.10.1006/anbo.1998.0746Search in Google Scholar

SAX, K. and H. J. SAX (1933): Chromosome number and morphology in the conifers. J. Arnold Arboretum 14: 356-375.10.5962/bhl.part.9959Open DOISearch in Google Scholar

SAYLOR, L. C. and H. A. SIMONS (1970): Karyology of Sequoia sempervirens; karyotype and accessory chromosomes. Cytologia 35: 294-303.10.1508/cytologia.35.294Open DOISearch in Google Scholar

SCHLARBAUM, S. E. and T. TSUCHIYA (1984): A chromosome study of coast redwood, Sequoia sempervirens (D. Don.) Endl.). Silvae Genet. 33: 56-62.Search in Google Scholar

SCHMIDT, A., R. L. DOUDRICK, J. S. HESLOP-HARRISON and T. SCHMIDT (2000): The contribution of short repeats of low sequence complexity to large conifer genomes. Theor. Appl. Genet. 101: 7-14.Search in Google Scholar

SEDEROFF, R. R., A.-M. STOMP and B. GWYNN et al. (1987): Application of DNA recombinant techniques in pines: Amolecular approach to genetic engineering in forestry. In: Cell and Tissue Culture in Forestry. Vol. 1. BONGA, J. M. and DURZAN, D. J. (Eds). Martinus Nijhoff Publishers, Dordrecht, pp. 314-329. Search in Google Scholar

SEWELL, M. M., B. K. SHERMAN and D. B. NEALE (199): A consensus map for loblolly pine (Pinus taeda L.). I. Construction and integration of individual linkage maps from two outbred three-generation pedigrees. Genetics 151: 321-330.10.1093/genetics/151.1.321Search in Google Scholar

SHEN, B., N. CARNEIRO and L. TORRES-JEREZ et al. (1994): Partial sequencing and mapping of clones from two maize cDNA libraries. Plant Mol. Biol. 26: 1085-1101. 10.1007/BF00040691Open DOISearch in Google Scholar

SILJAK-YAKOVIEV, S., M. CERBAH and J. COULAUD et al. (2002): Nuclear DNA content, base composition, heterochromatin and rDNA in Picea amorica and Picea abies. Theor. Appl. Genet. 104: 505-512.10.1007/s001220100755Open DOISearch in Google Scholar

SKRABANEK, L. and K. H. WOLFE (1998): Eukaryote genome duplication - where’s the evidence? Curr. Opin. Genet. Dev. 8: 694-700.Search in Google Scholar

SMITH, D. N. and M. E. DEVEY (1994): Occurrence andinheritance of microsatellite loci in Pinus radiata. Genome 37: 977-983.10.1139/g94-138Search in Google Scholar

SOLTIS, D. E. and P. S. SOLTIS (1999): Polyploidy: recurrent formation and genome evolution. Trends Ecol. Evol. 14: 348-352. 10.1016/S0169-5347(99)01638-9Open DOISearch in Google Scholar

SOLTIS, D. E., P. S. SOLTIS, M. D. BENNETT and I. J. LEITCH (2003a): Evolution of genome size in angiosperms. Am. J. Bot. 90: 1596-1603.10.3732/ajb.90.11.159621653334Open DOISearch in Google Scholar

SOLTIS, D. E., P. S. SOLTIS and J. TATE (2003b): Advances in the study of polyploidy since plant speciation. New Pytologist 161: 173-191.10.1046/j.1469-8137.2003.00948.xSearch in Google Scholar

STUART-ROGERS, C. and A. J. FLAVELL (2001): The evolution of Ty1-copia group retrotransposons in gymnosperms. Mol. Biol. Evol. 18: 155-163.Search in Google Scholar

STEBBINS, G. L. (1948): The chromosomes and relationship of Metasequoia and Sequoia. Science 108: 95-98.10.1126/science.108.2796.9517808724Open DOISearch in Google Scholar

STEBBINS, G. L. (1950): Variation and Evolution in Plants. Columbia University Press, New York.10.7312/steb94536Search in Google Scholar

STEBBINS, G. L. (1966): Chromosomal variation and evolution. Science 152: 1463-1469.10.1126/science.152.3728.146317788022Search in Google Scholar

STEWART, W. N. and G.W. ROTHWELL (1993): Paleobotany and the Evolution of Plants. Second Edition. Cambridge University Press, Cambridge. The Arabidopsis Genome Initiative (2000): Analysis of thegenome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796-815.Search in Google Scholar

THOMAS, C. A. (1970): The genetic organization of chromosomes. Annu. Rev. Genet. 5: 237-256.10.1146/annurev.ge.05.120171.00132116097657Search in Google Scholar

THOMSON, W. F. and M. G. MURRAY (1981): The nuclear genome: structure and function. In: The Histochemistry of Plants. Vol. 6. STUMPF, P. K. and CONN, E. E. (Eds). Academic Press, London, pp. 1-81.Search in Google Scholar

TURCOTTE, K., S. SRINIVASAN and T. BUREAU (2001): Survey of transposable elements from rice genome sequences. Plant J. 25: 169-179.10.1046/j.1365-313x.2001.00945.x11169193Open DOISearch in Google Scholar

VAN DE PEER, Y., J. S. TATLOR and A. MEYER (2003): Are all fishes ancient polyploids? J. Structural and Functional Genomics 2: 65-73.10.1023/A:1022652814749Search in Google Scholar

VANDERPOELE, K., C. SIMILLION and Y. VAN DE PEER (2003): Evidence that rice and other cereals are ancient aneuploids. Plant Cell 15: 2192-2202.10.1105/tpc.01401918134012953120Open DOISearch in Google Scholar

VICIENT, C. M., A. SUONIEMI, ANAMTHAWAT-JÓNSSON, J. TANSKANEN, A. BEHARAV, E. NEVO and A. H. SCHULMAN (1999): Retrotransposon BARE-1 and its role in genome evolution in the genus Horduem. Plant Cell 11: 1769-1784.10.1105/tpc.11.9.176914430410488242Open DOISearch in Google Scholar

VOYTAS, D. F., M. P. CUMMINGS, A. KONIECZNY, F. M. ASUBEL and S. RODERMEL (1992): Copia-like retrotransposons are ubiquitous among plants. Proc. Natl. Acad. Sci. USA 89: 7124-7128.10.1073/pnas.89.15.7124496581379734Search in Google Scholar

VIEIRA, C., D. LEPETIT, S. DUMONT and C. BIEMONT (1999): Make up of transposable elements following Drosophila simulans worldwide colonization. Mol. Biol. Evol. 16: 1251-1255.10.1093/oxfordjournals.molbev.a02621510486980Open DOISearch in Google Scholar

VINOGRADOV, A. E. (1999): Intron-genome size relationship on a large evolutionary scale. J. Mol. Evol. 49: 376-384.Search in Google Scholar

WAKAMIYA, I., R. J. NEWTON, J. S. JOHNSTON and H. J. PRICE (1993): Genome size and environmental factors in the genus Pinus. Am. J. Bot. 80: 1235-1241.10.2307/2445706Open DOISearch in Google Scholar

WALBOT, V. and D. A. PETROV (200): Gene galaxies in the maize genome. Proc. Natl. Acad. Sci. USA 98: 8163-8164.10.1073/pnas.1612787983741311459945Search in Google Scholar

WALSH, B. (2003): Population-genetic models of the fates of duplicate genes. Genetica 118: 279-294.10.1023/A:1024194802441Open DOISearch in Google Scholar

WATERSTON, R. and J. SULSTON (1995): The genome of Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 92: 10836-10840.10.1073/pnas.92.24.10836405267479894Open DOISearch in Google Scholar

WENDEL, J. F. (2000): Genome evolution in polyploids. Plant Mol. Biol. 42: 225-249.Search in Google Scholar

WENDEL, J. F., R. C. CRONN, I. ALVAREZ, B. LIU, R. L. SMALL and D. S. SENCHINA (2002): Intron size and genome size in plants. Mol. Biol. Evol. 19: 2346-2352.10.1093/oxfordjournals.molbev.a00406212446829Open DOISearch in Google Scholar

WENDEL, J. F. and S. R. WESSLER (2000): Retrotransposonmediated genome evolution on a local ecological scale. Proc. Natl. Acad. Sci. USA 97: 6250-6252.10.1073/pnas.97.12.62503399610841529Open DOISearch in Google Scholar

WOLFE, K. H. (2001): Yesterday’s polyploids and the mystery of diploidization. Nature Rev. Genet. 2: 333-341.10.1038/3507200911331899Open DOISearch in Google Scholar

WRIGHT, J.W. (1976): Introduction to Forest Genetics. Academic Press, New York.10.1016/B978-0-12-765250-4.50005-8Search in Google Scholar

YU, Z., S. J. WRIGHT and T. E. BUREAU (2000): Mutatorlike elements in Arabidopsis thaliana. Structure, diversity and evolution. Genetics 156: 2019-2031.10.1093/genetics/156.4.2019Search in Google Scholar

ZHANG, J. (2003): Evolution by gene duplication: An update. Trends Ecol. Evol. 18: 292-298.10.1016/S0169-5347(03)00033-8Open DOISearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo