1. bookVolume 25 (2017): Issue 1 (January 2017)
Journal Details
License
Format
Journal
eISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
Journal Details
License
Format
Journal
eISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
Abstract

Autophagy, a homeostatic process involved in nutrient regeneration and immune responses, may be involved in intracellular killing of M. tuberculosis. Several studies linked variation in autophagy genes with susceptibility to pulmonary tuberculosis, but others did not confirm these findings.

We genotyped single nucleotide polymorphisms (SNPs) in the ATG5 (rs2245214, c.574-12777G>C) and NOD2 (rs2066844, c.2104C>T) genes for 256 pulmonary tuberculosis patients and 330 unrelated healthy controls in Romania. Both SNPs have been reported as relevant for the autophagy process and potentially for susceptibility to active pulmonary tuberculosis.

In our study, the polymorphisms in ATG5 and NOD2 were not associated with tuberculosis. This suggests that the two genetic variants we focused on are not related to the risk for developing active TB in a Romanian population.

Keywords

1. WHO-Global tuberculosis report 2015. WHO/HTM/TB/2015.22.Search in Google Scholar

2. Kimmey JM, Huynh JP, Weiss LA, Park S, Kambal A, Debnath J, et al. Unique role for ATG5 in neutrophil-mediated immunopathology during M. tuberculosis infection. Nature. 2015;528(7583):565-9. DOI: 10.1038/nature16451.10.1038/nature16451484231326649827Search in Google Scholar

3. Bento CF, Empadinhas N, Mendes V. Autophagy in the fight against tuberculosis. DNA and cell biology. 2015;34(4):228-42. DOI: 10.1089/dna.2014.2745.10.1089/dna.2014.2745439002125607549Search in Google Scholar

4. Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature. 2011;469(7330):323-35. DOI: 10.1038/nature09782.10.1038/nature09782313168821248839Search in Google Scholar

5. Xie Z, Klionsky DJ. Autophagosome formation: core machinery and adaptations. Nature cell biology. 2007;9(10):1102-9. DOI: 10.1038/ncb1007-1102.10.1038/ncb1007-110217909521Search in Google Scholar

6. Deretic V, Levine B. Autophagy, immunity, and microbial adaptations. Cell host & microbe. 2009;5(6):527-49. DOI: 10.1016/j.chom.2009.05.016.10.1016/j.chom.2009.05.016272076319527881Search in Google Scholar

7. Suzuki K, Ohsumi Y. Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae. FEBS letters. 2007;581(11):2156-61. DOI: 10.1016/j.febslet.2007.01.096.10.1016/j.febslet.2007.01.09617382324Search in Google Scholar

8. Youle RJ, Narendra DP. Mechanisms of mitophagy. Nature reviews Molecular cell biology. 2011;12(1):9-14. DOI: 10.1038/nrm3028.10.1038/nrm3028478004721179058Search in Google Scholar

9. Klionsky DJ. Autophagy: from phenomenology to molecular understanding in less than a decade. Nature reviews Molecular cell biology. 2007;8(11):931-7. DOI: 10.1038/nrm2245.10.1038/nrm224517712358Search in Google Scholar

10. Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, et al. The role of autophagy during the early neonatal starvation period. Nature. 2004;432(7020):1032-6. DOI: 10.1038/nature03029.10.1038/nature0302915525940Search in Google Scholar

11. Gutierrez O, Pipaon C, Inohara N, Fontalba A, Ogura Y, Prosper F, et al. Induction of Nod2 in myelomonocytic and intestinal epithelial cells via nuclear factor-κB activation. Journal of Biological Chemistry. 2002;277(44):41701-5. DOI: 10.1074/jbc.M206473200.10.1074/jbc.M20647320012194982Search in Google Scholar

12. Girardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A, Thomas G, et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. Journal of Biological Chemistry. 2003;278(11):8869-72. DOI: 10.1074/jbc.C200651200.10.1074/jbc.C20065120012527755Search in Google Scholar

13. Inohara N, Ogura Y, Fontalba A, Gutierrez O, Pons F, Crespo J, et al. Host Recognition of Bacterial Muramyl Dipeptide Mediated through NOD2 IMPLICATIONS FOR CROHN′ S DISEASE. Journal of Biological Chemistry. 2003;278(8):5509-12. DOI: 10.1074/jbc.C200673200.10.1074/jbc.C20067320012514169Search in Google Scholar

14. Travassos LH, Carneiro LA, Ramjeet M, Hussey S, Kim Y-G, Magalhães JG, et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nature immunology. 2010;11(1):55-62. DOI: 10.1038/ni.1823.10.1038/ni.182319898471Search in Google Scholar

15. Ferwerda G, Girardin SE, Kullberg B-J, Le Bourhis L, De Jong DJ, Langenberg DM, et al. NOD2 and tolllike receptors are nonredundant recognition systems of Mycobacterium tuberculosis. 2005.10.1371/journal.ppat.0010034129135416322770Search in Google Scholar

16. CUCU MG, RIZA AL, CIMPOERU AL, STREATA I, SOSOI SS, CIONTEA MS, et al. Implication of TLR2 polymorphism in pulmonary tuberculosis. Annals of the Romanian Society for Cell Biology 2015;20 (1).Search in Google Scholar

17. Liu PT, Stenger S, Tang DH, Modlin RL. Cutting edge: vitamin D-mediated human antimicrobial activity against Mycobacterium tuberculosis is dependent on the induction of cathelicidin. The Journal of Immunology. 2007;179(4):2060-3. DOI: 10.4049/jimmunol.179.4.2060.10.4049/jimmunol.179.4.206017675463Search in Google Scholar

18. Fabri M, Stenger S, Shin D-M, Yuk J-M, Liu PT, Realegeno S, et al. Vitamin D is required for IFN-γ–mediated antimicrobial activity of human macrophages. Science translational medicine. 2011;3(104):104ra2-ra2.10.1126/scitranslmed.3003045326921021998409Search in Google Scholar

19. Jounai N, Kobiyama K, Shiina M, Ogata K, Ishii KJ, Takeshita F. NLRP4 negatively regulates autophagic processes through an association with beclin1. The Journal of immunology. 2011;186(3):1646-55. DOI: 10.4049/jimmunol.1001654.10.4049/jimmunol.100165421209283Search in Google Scholar

20. Saitoh T, Akira S. Regulation of innate immune responses by autophagy-related proteins. The Journal of cell biology. 2010;189(6):925-35. DOI: 10.1083/jcb.201002021.10.1083/jcb.201002021288634820548099Search in Google Scholar

21. Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature. 2008;451(7182):1069-75. DOI: 10.1038/nature06639.10.1038/nature06639267039918305538Search in Google Scholar

22. Castillo EF, Dekonenko A, Arko-Mensah J, Mandell MA, Dupont N, Jiang S, et al. Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation. Proceedings of the National Academy of Sciences. 2012;109(46):E3168-E76. DOI: 10.1073/pnas.1210500109.10.1073/pnas.1210500109350315223093667Search in Google Scholar

23. Watson RO, Manzanillo PS, Cox JS. Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell. 2012;150(4):803-15. DOI: 10.1016/j.cell.2012.06.040.10.1016/j.cell.2012.06.040370865622901810Search in Google Scholar

24. Songane M, Kleinnijenhuis J, Alisjahbana B, Sahiratmadja E, Parwati I, Oosting M, et al. Polymorphisms in autophagy genes and susceptibility to tuberculosis. PloS one. 2012;7(8):e41618. DOI: 10.1371/journal.pone.0041618.10.1371/journal.pone.0041618341284322879892Search in Google Scholar

25. Cooney R, Baker J, Brain O, Danis B, Pichulik T, Allan P, et al. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nature medicine. 2010;16(1):90-7. DOI: 10.1038/nm.2069.10.1038/nm.206919966812Search in Google Scholar

26. Homer CR, Richmond AL, Rebert NA, Achkar JP, McDonald C. ATG16L1 and NOD2 interact in an autophagy-dependent antibacterial pathway implicated in Crohn’s disease pathogenesis. Gastroenterology. 2010;139(5):1630-41. e2.10.1053/j.gastro.2010.07.006296758820637199Search in Google Scholar

27. Hugot J-P, Chamaillard M, Zouali H, Lesage S, Cézard J-P, Belaiche J, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature. 2001;411(6837):599-603. DOI: 10.1038/35079107.10.1038/3507910711385576Search in Google Scholar

28. Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature. 2001;411(6837):603-6. DOI: 10.1038/35079114.10.1038/3507911411385577Search in Google Scholar

29. Economou M, Trikalinos TA, Loizou KT, Tsianos EV, Ioannidis JP. Differential effects of NOD2 variants on Crohn’s disease risk and phenotype in diverse populations: a metaanalysis. The American journal of gastroenterology. 2004;99(12):2393-404. DOI: 10.1111/j.1572-0241.2004.40304.x.10.1111/j.1572-0241.2004.40304.x15571588Search in Google Scholar

30. Kanaan ZM, Eichenberger MR, Ahmad S, Weller C, Roberts H, Pan J, et al. Clinical predictors of inflammatory bowel disease in a genetically well-defined Caucasian population. Journal of negative results in biomedicine. 2012;11:7. DOI: 10.1186/1477-5751-11-7.10.1186/1477-5751-11-7329246922269043Search in Google Scholar

31. van Schijndel JE, van Loo KM, van Zweeden M, Djurovic S, Andreassen OA, Hansen T, et al. Three-cohort targeted gene screening reveals a non-synonymous TRKA polymorphism associated with schizophrenia. Journal of psychiatric research. 2009;43(15):1195-9. DOI: 10.1016/j.jpsychires.2009.04.006.10.1016/j.jpsychires.2009.04.00619435634Search in Google Scholar

32. Kabesch M, Peters W, Carr D, Leupold W, Weiland SK, von Mutius E. Association between polymorphisms in caspase recruitment domain containing protein 15 and allergy in two German populations. Journal of allergy and clinical immunology. 2003;111(4):813-7. DOI: 10.1067/mai.2003.1336.10.1067/mai.2003.133612704363Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo