1. bookVolume 23 (2015): Issue 4 (December 2015)
Journal Details
License
Format
Journal
eISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
access type Open Access

PCR coupled with mass-spectrometry for detection of Clostridium difficile virulence markers during the emergence of ribotype 027 in Bucharest area

Published Online: 30 Dec 2015
Volume & Issue: Volume 23 (2015) - Issue 4 (December 2015)
Page range: 449 - 456
Received: 21 Aug 2015
Accepted: 25 Oct 2015
Journal Details
License
Format
Journal
eISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
Abstract

In recent years Clostridium difficile infection (CDI) has represented a serious public health issue, mainly due to the global spread of the hypervirulent strain NAP1/027/BI. The purpose of the present study was to evaluate the utility of a PCR coupled with electrospray ionization mass spectrometry (ESI-MS) commercial assay for the detection of C. difficile virulence markers. Non-duplicative C. difficile isolates from patients with CDI diagnosed in a tertiary level hospital from Bucharest were tested for toxin A, toxin B, binary toxin genes and deletion in tcdC gene using PCR/capillary gel electrophoresis and PCR/ESI-MS. The study analysed 45 non-duplicative isolates, 33 strains (73.3%) belonging to ribotype 027. The concordance between PCR/capillary gel electrophoresis and PCR/ESI-MS was 100% for toxin A gene, 97.8% for toxin B gene, 91.1% for binary toxin subunit A gene and 95.6% for binary toxin subunit B gene. The general concordance for the complete panel of markers was 88.9% but was 100% for ribotype 027 isolates. PCR/ESI-MS might be a valid method for the detection of C. difficile virulence markers, including binary toxin.

Keywords

Cuvinte cheie:

1. Bauer MP, Notermans DW, van Benthem BH, Brazier JS, Wilcox MH, Rupnik M, et al. Clostridium difficile infection in Europe: a hospital-based survey. Lancet. 2011;377:63-73. DOI: 10.1016/S0140-6736(10)61266-410.1016/S0140-6736(10)61266-4Search in Google Scholar

2. Vohra P, Poxton IR. Comparison of toxin and spore production in clinically relevant strains of Clostridium difficile. Microbiology. 2011;157:1343-53. DOI: 10.1099/mic.0.046243-010.1099/mic.0.046243-021330434Search in Google Scholar

3. Goorhuis A, Bakker D, Corver J, Debast SB, Harmanus C, Notermans DW, et al. Emergence of Clostridium difficile infection due to a new hypervirulent strain, polymerase chain reaction ribotype 078. Clin Infect Dis. 2008;47:1162-70. DOI: 10.1086/59225710.1086/59225718808358Search in Google Scholar

4. Stabler RA, He M, Dawson LFT, Martin M, Valiente E, Parkhill J, et al Comparative genome and phenotypic analysis of Clostridium difficile 027 strains provides insight into the evolution of a hypervirulent bacterium. Genome Biol. 2009;10:R102. DOI: 10.1186/gb-2009-10-9-r10210.1186/gb-2009-10-9-r102276897719781061Search in Google Scholar

5. Lim SK, Stuart RL, Mackin KE, Carter GP, Kotsanas D, Francis MJ, et al. Emergence of a ribotype 244 strain of Clostridium difficile associated with severe disease and related to the epidemic ribotype 027 strain. Clin Infect Dis. 2014;58:1723-30. DOI: 10.1093/cid/ciu20310.1093/cid/ciu20324704722Search in Google Scholar

6. Rafila A, Indra A, Popescu GA, Wewalka G, Allerberger F, Benea S, et al. Occurrence of Clostridium difficile infections due to PCR ribotype 027 in Bucharest, Romania. J Infect Dev Ctries. 2014;8:694-8. DOI: 10.3855/jidc.443510.3855/jidc.443524916866Search in Google Scholar

7. Indra A, Huhulescu S, Schneeweis M, Hasenberger P, Kernbichler S, Fiedler A, et al. Characterization of Clostridium difficile isolates using capillary gel electrophoresis –based PCR ribotyping. J Med Microbiol. 2008;57:1377-82. DOI: 10.1099/jmm.0.47714-010.1099/jmm.0.47714-0288493818927415Search in Google Scholar

8. van den Berg RJ, Claas ECJ, Oyib DH, Klaassen CHW, Dijkshoorn L, Brazier JS, et al. Characterization of toxin A-negative, toxin B-positive Clostridium difficile isolates from outbreaks in different countries by amplified fragment length polymorphism and PCR ribotyping. J Clin Microbiol. 2004;42:1035–41. DOI: 10.1128/JCM.42.3.1035-1041.200410.1128/JCM.42.3.1035-1041.200435689815004050Search in Google Scholar

9. Kato N, Ou CY, Kato H, Bartley SL, Brown VK, Dowell VRJ, Jr, et al. Identification of toxigenic Clostridium difficile by the polymerase chain reaction. J Clin Microbiol. 1991;29:33–7.10.1128/jcm.29.1.33-37.19912696971993763Search in Google Scholar

10. Kato H, Kato N, Katow S, Maegawa T, Nakamura S, Lyerly DM. Deletions in the repeating sequences of the toxin A gene of toxin A-negative, toxin B-positive Clostridium difficile strains. FEMS Microbiol Lett. 1999;175:197–203. DOI: 10.1111/j.1574-6968.1999. tb13620.xSearch in Google Scholar

11. Stubbs SL, Brazier JS, Talbot PR, Duerden BI. PCR-restriction fragment length polymorphism analysis for identification of Bacteroides spp. and characterization of nitroimidazole resistance genes. J Clin Microbiol. 2000;38:3209–13.10.1128/JCM.38.9.3209-3213.20008735810970359Search in Google Scholar

12. Spigaglia P, Mastrantonio P. Molecular analysis of the pathogenicity locus and polymorphism in the putative negative regulator of toxin production (TcdC) among Clostridium difficile clinical isolates. J Clin Microbiol. 2002;40:3470–5. DOI: 10.1128/JCM.40.9.3470-3475.200210.1128/JCM.40.9.3470-3475.200213071612202595Search in Google Scholar

13. Curry SR, Marsh JW, Muto CA, O’Leary MM, Pasculle AW, Harrison LH. tcdC Genotypes associated with severe tcdC truncation in an epidemic clone and other strains of Clostridium difficile. J Clin Microbiol. 2007;45:215–21. DOI: 10.1128/JCM.01599-0610.1128/JCM.01599-06182895917035492Search in Google Scholar

14. Wolff D, Brüning T, Gerritzen A. Rapid detection of the Clostridium difficile ribotype 027 tcdC gene frame shift mutation at position 117 by real-time PCR and melt curve analysis. Eur J Clin Microbiol Infect Dis. 2009;28:959-62. DOI: 10.1007/s10096-009-0731-710.1007/s10096-009-0731-719333630Search in Google Scholar

15. Ecker DJ, Sampath R, Blyn LB, Eshoo MW, Ivy C, Ecker JA, et al. Rapid identification and strain-typing of respiratory pathogens for epidemic surveillance. Proc Natl Acad Sci U S A. 2005;102:8012-7. DOI: 10.1073/pnas.040992010210.1073/pnas.0409920102113825715911764Search in Google Scholar

16. Wolk DM, Kaleta EJ, Wysocki VH. PCR-electrospray ionization mass spectrometry: the potential to change infectious disease diagnostics in clinical and public health laboratories. J Mol Diagn. 2012;14:295-304. DOI: 10.1016/j.jmoldx.2012.02.00510.1016/j.jmoldx.2012.02.005710602722584138Search in Google Scholar

17. Wilcox MH, Shetty N, Fawley WN, Shemko M, Coen P, Birtles A, et al. Changing epidemiology of Clostridium difficile infection following the introduction of a national ribotyping-based surveillance scheme in England. Clin Infect Dis. 2012;55:1056-63. DOI: 10.1093/cid/cis61410.1093/cid/cis61422784871Search in Google Scholar

18. Popescu G, Serban R, Pistol A, Niculcea A, Preda A, Lemeni D, et al. Clinical and microbiological characterization of Clostridium difficile infection in Romania (2013-2014); a hospital-based study, BMC Infect Dis. 2014;14(Suppl 7):O24. DOI: 10.1186/1471-2334-14-S7-O2410.1186/1471-2334-14-S7-O24Search in Google Scholar

19. Drudy D, Fanning S, Kyne L. Toxin A-negative, toxin B-positive Clostridium difficile. Int J Infect Dis. 2007;11:5–10. DOI: 10.1016/j.ijid.2006.04.00310.1016/j.ijid.2006.04.00316857405Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo