1. bookVolume 63 (2016): Issue 2 (July 2016)
Journal Details
License
Format
Journal
eISSN
1854-7400
First Published
30 Mar 2016
Publication timeframe
4 times per year
Languages
English
Open Access

Natural gas consumption prediction in Slovenian industry – a case study

Published Online: 26 Oct 2016
Volume & Issue: Volume 63 (2016) - Issue 2 (July 2016)
Page range: 91 - 96
Received: 11 May 2016
Accepted: 16 Jun 2016
Journal Details
License
Format
Journal
eISSN
1854-7400
First Published
30 Mar 2016
Publication timeframe
4 times per year
Languages
English

[1] Kovačič M., Šarler B., Genetic programming prediction of the natural gas consumption in a steel plant. Energy 2014;66:273-84. doi: 10.1016/j.energy.2014.02.001.Search in Google Scholar

[2] Kovačič M., Dolenc F., Prediction of the natural gas consumption in chemical processing facilities with genetic programming. Genet Program Evolvable Mach 2016. doi: 10.1007/s10710-016-9264-x.Search in Google Scholar

[3] Kovačič M., Šarler B., Genetic Algorithm-Based Batch Filling Scheduling in the Steel Industry. Mater Manuf Process 2011;26:464-74. doi: 10.1080/10426914.2010.525576.Search in Google Scholar

[4] Kovačič M. Modeling of Total Decarburization of Spring Steel with Genetic Programming. Mater Manuf Process 2014;30:434-43. doi: 10.1080/10426914.2014.961477.Search in Google Scholar

[5] Kovačič M., Rožej U., Brezočnik M., Genetic Algorithm Rolling Mill Layout Optimization. Mater Manuf Process 2013;28:783-7. doi: 10.1080/10426914.2012.718475.Search in Google Scholar

[6] Zuperl U., Cus F., System for off-line feedrate optimization and neural force control in end milling. Int J Adapt Control Signal Process 2012;26:105-23. doi: 10.1002/acs.1277.Search in Google Scholar

[7] Zuperl U., Cus F., Reibenschuh M., Modeling and adaptive force control of milling by using artificial techniques. J Intell Manuf 2012;23:1805-15. doi: 10.1007/s10845-010-0487-z.Search in Google Scholar

Recommended articles from Trend MD