Cite

1. RAVINDRANATH Y. Evolution of modern treatment of childhood acute leukemia and cancer: adventures and battles in the 1970s and 1980s. Pediatr Clin North Am. 2015; 62(1):1-10.10.1016/j.pcl.2014.09.00525435108Search in Google Scholar

2. BLEEKER FE., HOPMAN SM., MERKS JH., AALFS CM., HENNEKAM RC. Brain tumors and syndromes in children. Neuropediatrics. 2014; 45(3):137-61.10.1055/s-0034-136811624535705Search in Google Scholar

3. MILLARD NE., DUNKEL IJ. Advances in the management of central nervous system germ cell tumors. Curr Oncol Rep. 2014; 16(7):393.10.1007/s11912-014-0393-124838613Search in Google Scholar

4. THORP NJ., TAYLOR RE. Management of central nervous system tumours in children. Clin Oncol (R Coll Radiol). 2014; 26(7):438-45.10.1016/j.clon.2014.04.02924856624Search in Google Scholar

5. CHEUK DK., LEE TL., CHIANG AK., HA SY., CHAN GC. Autologous hematopoietic stem cell transplantation for high-risk brain tumors in children. J Neurooncol. 2008; 86(3):337-47.10.1007/s11060-007-9478-0710010417906911Search in Google Scholar

6. SANDU N., SCHALLER B. Stem cell transplantation in brain tumors: a new field for molecular imaging? Mol Med. 2010; 16(9-10):433-7.10.2119/molmed.2010.00035293595020593112Search in Google Scholar

7. COHEN AL., COLMAN H. Glioma biology and molecular markers. Cancer Treat Res. 2015; 163:15-30.10.1007/978-3-319-12048-5_225468223Search in Google Scholar

8. WURDINGER T., DEUMELANDT K., VAN DER VLIET HJ., WESSELING P., DE GRUIJL TD. Mechanisms of intimate and long-distance cross-talk between glioma and myeloid cells: how to break a vicious cycle. Biochim Biophys Acta. 2014; 1846(2):560-75.10.1016/j.bbcan.2014.10.00325453365Search in Google Scholar

9. NAKANO I. Stem cell signature in glioblastoma: therapeutic development for a moving target. J Neurosurg. 2015; 122(2):324-30.10.3171/2014.9.JNS13225325397368Search in Google Scholar

10. CHINTAGUMPALA M., GAJJAR A. Brain tumors. PediatrClin North Am. 2015;62(1):167-78.10.1016/j.pcl.2014.09.01125435118Search in Google Scholar

11. THOMAS C., BHATIA S. Cancer: brain-regulated biphasic stress response induces cell growth or cell death to adapt to psychological stressors. Adv Mind Body Med. 2014; 28(3):14-21.Search in Google Scholar

12. AMBADY P., BETTEGOWDA C., HOLDHOFF M. Emerging methods for disease monitoring in malignant gliomas. CNS Oncol. 2013; 2(6):511-22.10.2217/cns.13.44498651625054821Search in Google Scholar

13. CARMIGNANI M., VOLPE AR., ALDEA M., SORITAU O., IRIMIE A., FLORIAN IS., et al. Glioblastoma stem cells: a new target for metformin and arsenic trioxide. J Biol Regul Homeost Agents. 2014; 28(1):1-15.Search in Google Scholar

14. ALDEA M., CRACIUN L., TOMULEASA C., BERINDAN-NEAGOE I., KACSO G., FLORIAN IS., et al. Repositioning metformin in cancer: genetics, drug targets, and new ways of delivery. Tumour Biol. 2014; 35(6):5101-10.10.1007/s13277-014-1676-824504677Search in Google Scholar

15. ALDEA M., TOMULEASA C., PETRUSHEV B., SUSMAN S., KACSO GI., IRIMIE A., et al. Antidiabetic pharmacology: a link between metabolic syndrome and neuro-oncology? J BUON. 2011; 16(3):409-13.Search in Google Scholar

16. FLORIAN IS., TOMULEASA C., SORITAU O., TIMIS T., IOANI H., IRIMIE A., et al. Cancer stem cells and malignant gliomas. From pathophysiology to targeted molecular therapy. J BUON. 2011; 16(1):16-23.Search in Google Scholar

17. AIKEN R. Molecular neuro-oncology and the challenge of the blood-brain barrier. Semin Oncol. 2014; 41(4):438-45.10.1053/j.seminoncol.2014.06.00525173137Search in Google Scholar

18. SINGHAL T., ALAVI A., KIM CK. Brain: positron emission tomography tracers beyond 18F fluorodeoxyglucose. PET Clin. 2014; 9(3):267-76.10.1016/j.cpet.2014.03.00925030390Search in Google Scholar

19. JUHÁSZ C., DWIVEDI S., KAMSON DO., MICHELHAUGH SK., MITTAL S. Comparison of amino acid positron emission tomographic radiotracers for molecular imaging of primary and metastatic brain tumors. Mol Imaging. 2014; 13.10.2310/7290.2014.00015419908724825818Search in Google Scholar

20. WHITFIELD GA., KENNEDY SR., DJOUKHADAR IK., JACKSON A. Imaging and target volume delineation in glioma. Clin Oncol (R Coll Radiol). 2014; 26(7):364-76.10.1016/j.clon.2014.04.02624824451Search in Google Scholar

21. HARTMANN O., VALTEAU-COUANET D., VASSAL G., LAPIERRE V., BRUGIERES L., DELGADO R, et al. Prognostic factors in metastatic neuroblastoma in patients over 1 year of age treated with high-dose chemotherapy and stem cell transplantation: a multivariate analysis in 218 patients treated in a single institution. Bone Marrow Transplant. 1999; 23(8):789-95.10.1038/sj.bmt.170173710231141Search in Google Scholar

22. DUPUIS-GIROD S., HARTMANN O., BENHAMOU E., DOZ F., MECHINAUD F., BOUFFET E., et al. Will high dose chemotherapy followed by autologous bone marrow transplantation supplant cranio-spinal irradiation in young children treated for medulloblastoma? J Neurooncol. 1996; 27(1):87-98.10.1007/BF001460888699230Search in Google Scholar

23. VALTEAU-COUANET D., FILLIPINI B., BENHAMOU E., GRILL J., KALIFA C., COUANET D., et al. High-dose busulfan and thiotepa followed by autologous stem cell transplantation (ASCT) in previously irradiated medulloblastoma patients: high toxicity and lack of efficacy. Bone Marrow Transplant. 2005; 36(11):939-45.10.1038/sj.bmt.170516216184181Search in Google Scholar

24. SECONDINO S., PEDRAZZOLI P., SCHIAVETTO I., Basilico V., BRAMERIO E., MASSIMINO M, et al. Antitumor effect of allogeneic hematopoietic SCT in metastatic medulloblastoma. Bone Marrow Transplant. 2008; 42(2):131-3.10.1038/bmt.2008.8618372908Search in Google Scholar

25. NISHIKAWA T., OKAMOTO Y., TANABE T., SHINKODA Y., KODAMA Y., HIGASHI M., et al. Unexpectedly high AUC levels in a child who received intravenous busulfan before stem cell transplantation. Bone Marrow Transplant. 2010; 45(3):602-4.10.1038/bmt.2009.19519684630Search in Google Scholar

26. LAFAY-COUSIN L., HADER W., WEI XC., NORDAL R., STROTHER D., HAWKINS C., et al. Post-chemotherapy maturation in supratentorial primitive neuroectodermal tumors. Brain Pathol. 2014; 24(2):166-72.10.1111/bpa.12089802891124033491Search in Google Scholar

27. CLEMENT J., VARLOTTO J., RYBKA W., FRAUENHOFFER E., DRABICK JJ. Unusual case of recurrent extraneural metastatic medulloblastoma in a young adult: durable complete remission with Ewing sarcoma chemotherapy regimen and consolidation with autologous bone marrow transplantation and local radiation. J Clin Oncol. 2013; 31(19):e316-9.10.1200/JCO.2012.42.670023715566Search in Google Scholar

28. VELJKOVIC D., VUJIC D., NONKOVIC OS., JEVTIC D., ZECEVIC Z, LAZIC E. Mobilization and harvesting of peripheral blood stem cells in pediatric patients with solid tumors. Ther Apher Dial. 2011; 15(6):579-86.10.1111/j.1744-9987.2011.00990.x22107695Search in Google Scholar

29. NEGRETTI L., BLANCHARD P., COUANET D., KIEFFER V., GOMA G., HABRAND JL., et al. Pseudoprogression after high-dose busulfan-thiotepa with autologous stem cell transplantation and radiation therapy in children with brain tumors: Impact on survival. Neuro Oncol. 2012; 14(11):1413-21.10.1093/neuonc/nos212348026423042716Search in Google Scholar

30. SANGER F., NICKLEN S., COULSON AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA. 1977; 74(12):5463-7.10.1073/pnas.74.12.5463431765271968Search in Google Scholar

31. QUAIL MA., SMITH M., COUPLAND P., OTTO TD., HARRIS SR., CONNOR TR., et al. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics. 2012; 13:341.10.1186/1471-2164-13-341343122722827831Search in Google Scholar

32. METZKER ML. Sequencing technologies – the next generation. Nat Rev Genet. 2010; 11(1):31-46.10.1038/nrg262619997069Search in Google Scholar

33. GRADA A., WEINBRECHT K. Next-generation sequencing: methodology and application. J Invest Dermatol. 2013; 133 (8):e11.10.1038/jid.2013.24823856935Search in Google Scholar

34. MELDRUM C, DOYLE MA, TOTHILL RW. Next-generation sequencing for cancer diagnostics: a practical perspective. Clin Biochem Rev. 2011; 32(4):177-95.Search in Google Scholar

35. ROBINSON J., HALLIWELL JA., MCWILLIAM H., LOPEZ R., PARHAM P., MARSH SG. The IMGT/HLA database. Nucleic Acids Res. 2013; 41(Database issue):D1222-7.10.1093/nar/gks949353122123080122Search in Google Scholar

36. JUNG HL. Shedding a new light on the HLA matching. Korean J Hematol. 2011; 46(1):1-2.10.5045/kjh.2011.46.1.1306561821461293Search in Google Scholar

37. GABRIEL C., DANZEL M., HACKL C., KOPAL G., HUFNAGL P., HOFER K., et al. Rapid high-throughput human leucocyte antigen typing by massive parallel pyrosequencing for high-resolution allele identification. Hum. Immunol. 2009, 70, 960-64.Search in Google Scholar

38. BENTLEY G., HIGUCHI R., HOGLUND B., GOODRIDGE D., SAYER D., TRACHTENBERG EA, et al. High-resolution, high-throughput HLA genotyping by next generation sequencing. Tissue Antigens 2009, 74, 393-403.10.1111/j.1399-0039.2009.01345.x420512519845894Search in Google Scholar

39. HOLCOMB CL., HÖGLUND B., ANDERSON MW., BLAKE LA., BÖHME I., EGHOLM M., et al. A multi-site study using high-resolution HLA genotyping by next generation sequencing. Tissue Antigens. 2011; 77(3):206-17.10.1111/j.1399-0039.2010.01606.x420512421299525Search in Google Scholar

40. WANG C., KRISHNAKUMAR S., WILHELMY J., BABRZADEH F., STEPANYAN L., SU LF., et al. High-throughput, high-fidelity HLA genotyping with deep sequencing. Proc Natl Acad Sci USA. 2012; 109(22):8676-81.10.1073/pnas.1206614109336521822589303Search in Google Scholar

41. DANZER M., NIKLAS N., STABENTHEINER S., HOFER K., PRÖLL J., STÜCKLER C., et al. Rapid, scalable and highly automated HLA genotyping using next-generation sequencing: a transition from research to diagnostics. BMC Genomics. 2013; 14:221.10.1186/1471-2164-14-221363986523557197Search in Google Scholar

42. MOONSAMY PV., WILLIAMS T., BONELLA P., HOLCOMB CL., HOGLUND BN., HILLMAN G., et al. High Throughput HLA genotyping using 454 sequencing and the FluidigmAccess ArrayTM system for simplified amplicon library preparation. Tissue Antigens 2013, 81, 141-49.10.1111/tan.1207123398507Search in Google Scholar

43. CHANG CJ., CHEN PL., YANG WS., CHAO KM. A fault-tolerant method for HLA typing with PacBio data. BMC Bioinformatics. 2014; 15:296.10.1186/1471-2105-15-296416184725183223Search in Google Scholar

44. EHRENBERG PK., GERETZ A., BALDWIN KM., APPS R., POLONIS VR., ROBB ML., et al. High-throughput multiplex HLA genotyping by next-generation sequencing using multi-locus individual tagging. BMC Genomics. 2014; 15:864.10.1186/1471-2164-15-864419600325283548Search in Google Scholar

45. SMITH AG., PYO CW., NELSON W., GOW E., WANG R., SHEN S., et al. Next generation sequencing to determine HLA class II genotypes in a cohort of hematopoietic cell transplant patients and donors. Hum Immunol. 2014; 75(10):1040-6.10.1016/j.humimm.2014.08.20625167774Search in Google Scholar

46. ZHOU M., GAO D., CHAI X., LIU J., LAN Z., LIU Q., et al. Application of high-throughput, high-resolution and cost-effective next generation sequencing-based large-scale HLA typing in donor registry. Tissue Antigens. 2015; 85(1):20-8.10.1111/tan.1247725417816Search in Google Scholar

eISSN:
2501-062X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, Internal Medicine, other, Cardiology, Gastroenterology, Rheumatology