1. bookVolume 19 (2017): Issue 4 (December 2017)
Journal Details
License
Format
Journal
eISSN
1899-4741
First Published
03 Jul 2007
Publication timeframe
4 times per year
Languages
English
access type Open Access

Antibacterial activity of iron oxide nanoparticles synthesized by co-precipitation technology against Bacillus cereus and Klebsiella pneumoniae

Published Online: 29 Dec 2017
Page range: 110 - 115
Journal Details
License
Format
Journal
eISSN
1899-4741
First Published
03 Jul 2007
Publication timeframe
4 times per year
Languages
English
Abstract

The present study investigates the synthesis and characterization of iron oxide nanoparticles (Fe3O4-NPs) for their antibacterial potential against Bacillus cereus and Klebsiella pneumonia by modified disc diffusion and broth agar dilution methods. DLS and XRD results revealed the average size of synthesized Fe3O4-NPs as 24 nm while XPS measurement exhibited the spin-orbit peak of Fe 2p3/2 binding energy at 511 eV. Fe3O4-NPs inhibited the growth of K. pneumoniae and B. cereus in both liquid and soild agar media, and displayed 26 mm and 22 mm zone of inhibitions, respectively. MIC of Fe3O4-NPs was found to be 5 μg/mL against these strains. However, MBC for these strains was observed at 40 μg/mL concentration of Fe3O4-NPs for exhibiting 40–50% loss in viable bacterial cells and 80 μg/mL concentration of Fe3O4-NPs acted as bactericidal for causing 90–99% loss in viability. Hence, these nanoparticles can be explored for their additional antimicrobial and biomedical applications.

Keywords

1. Singh, R., Smitha, M.S. & Singh, S.P. (2014). The role of nanotechnology in combating multi-drug resistant bacteria. J. Nanosci. Nanotechnol. 14(7), 4745–4756. DOI: 10.1166/jnn.2014.9527.10.1166/jnn.2014.9527Open DOISearch in Google Scholar

2. Stubbings, W. & Labischinski, H. (2009). New antibiotics for antibiotic-resistant bacteria. Biol. Rep. 17(1) 40–46. DOI: 10.3410/B1-40.10.3410/B1-40Open DOISearch in Google Scholar

3. Patrascu, J.M., Nedelcu, I.A., Sonmez, M., Ficai, D., Ficai, A. & Vasile, B.S. (2015). Composite scaffolds based on silver nanoparticles for biomedical applications. J. Nanomat. 8 pages. DOI: http://dx.doi.org/10.1155/2015/587989.10.1155/2015/587989Search in Google Scholar

4. Caamano, M.A., Carrillo-Morales, M. & Olivares-Trejo, J.J. (2016). Iron oxide nanoparticle improve the antibacterial activity of erythromycin. J. Bacteriol. Parasitol. 7(4), 267–270. DOI: 10.4172/2155-9597.1000267.10.4172/2155-9597.1000267Open DOISearch in Google Scholar

5. Kalishwaralal, K., Barathmanikanth, S., Pandian, S.R.K., Deepak, V. & Gurunathan, S. (2010). Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Coll. Surf. B: Biointerf. 79(2), 340–344. DOI: 10.1016/j.colsurfb.2010.04.014.10.1016/j.colsurfb.2010.04.014Open DOISearch in Google Scholar

6. Mihu, M.R., Sandkovsky, U., Han, G., Friedman, J.M., Nosanchuk, J.D. & Martinez, L.R. (2010). The use of nitric oxide releasing nanoparticles as a treatment against Acinetobacter baumannii in wound infections. Virulence 1(2), 62–67. DOI: 10.4161/viru.1.2.10038.10.4161/viru.1.2.10038Open DOISearch in Google Scholar

7. Satar, R., Syed, I.A., Rasool, M., Pushparaj, P.N. & Ansari, S.A. (2016). Investigating the antibacterial potential of agarose nanoparticles synthesized by nanoprecipitation technology. Pol. J. Chem. Technol. 18(2), 9–12. DOI: https://doi.org/10.1515/pjct-2016-0022.10.1515/pjct-2016-0022Open DOISearch in Google Scholar

8. Fang, C.T., Lai, S.Y., Yi, W.C., Hsueh, P.R., Liu, K.L. & Chang, S.C. (2007). Klebsiella pneumoniae genotype K1: an emerging pathogen that causes septic ocular or central nervous system complications from pyogenic liver abscess. Clin. Infect. Dis. 45(3), 284–290. DOI: 10.1086/519262.10.1086/519262Search in Google Scholar

9. Donlan, R.M. (2001). Biofilms and device-associated infections. Emer. Inf. Dis. 7(2), 277–281. DOI: 10.3201/eid0702.700277.10.3201/eid0702.700277Open DOISearch in Google Scholar

10. Jagnow, J. & Clegg, S. (2003). Klebsiella pneumoniae MrkD-mediated biofilm formation on extracellular matrix and collagen-coated surfaces. Microbiology 149(9), 2397–2405. DOI: 10.1099/mic.0.26434-0.10.1099/mic.0.26434-0Search in Google Scholar

11. Ash, C., Farrow, J.A., Dorsch, M., Stackenbrandt, E. & Collins, M.D. (1991). Comparative analysis of Bacillus anthracis, Bacillus cereus, and related species on the basis of reverse transcriptase of 16S rRNA. Int. J. Syst. Bacteriol. 41(3), 343–346. DOI: 10.1099/00207713-41-3-343.10.1099/00207713-41-3-343Open DOISearch in Google Scholar

12. Bottone, E.J. (2010). Bacillus Cereus, a volatile human pathogen. Clin. Microbiol. Rev. 23(2), 382–398. DOI: 10.1128/CMR.00073-09.10.1128/CMR.00073-09Open DOISearch in Google Scholar

13. Wu, W., He, Q. & Jiang, C. (2008). Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies. Nan. Res. Lett. 3(11), 397–415. DOI: 10.1007/s11671-008-9174-9.10.1007/s11671-008-9174-9Open DOISearch in Google Scholar

14. Mohapatra, M. & Anand, S. (2010). Synthesis and applications of nanostructured iron oxides/hydroxides-a review. Int. J. Eng. Sci. Technol. 2(8), 127–146. DOI: http://dx.doi.org/10.4314/ijest.v2i8.63846.10.4314/ijest.v2i8.63846Open DOISearch in Google Scholar

15. Hui, C., Shen, C., Yang, T., Bao, L., Tian, J. & Ding, H. (2008). Large-scale Fe3O4 nanoparticles soluble in water synthesized by a facile method. J. Phys. Chem. C 112(30), 11336–11339. DOI: 10.1021/jp801632p.10.1021/jp801632pOpen DOISearch in Google Scholar

16. Ahmed, T., Phul, R., Khatoon, N. & Sardar, M. (2017). Antibacterial efficacy of Ocimum sanctum leaf extract-treated iron oxide nanoparticles. New J. Chem. 41(5), 2055–2061. DOI: 10.1039/C7NJ00103G.10.1039/C7NJ00103Open DOISearch in Google Scholar

17. Irshad, R., Tahir, K., Li, B., Ahmad, A., Siddiqui, A. & Nazir, S. (2017). Antibacterial activity of biochemically capped iron oxide nanoparticles: A view towards green chemistry. J. Photochem. Photobiol. B 170(4), 241–246. DOI: 10.1016/j.jphotobiol.2017.04.020.10.1016/j.jphotobiol.2017.04.020Open DOISearch in Google Scholar

18. Mahdavi, M., Ahmad, M.B., Haron, M.J., Gharayebi, Y., Shameli, K. & Nadi, B. (2013). Fabrication and characterization of SiO2/(3-aminopropyl) triethoxysilane-coated magnetite nanoparticles for lead (II) removal from aqueous solution. J. Inorg. Organomet. Polym. Mater. 23(3), 599–607. DOI: 10.1007/s10904-013-9820-2.10.1007/s10904-013-9820-2Open DOISearch in Google Scholar

19. Majeed, M.I., Guo, J., Yan, W. & Tan, B. (2016). Preparation of magnetic iron oxide nanoparticles (MIONS) with improved saturation magnetization using multifunctional polymer ligand. Polymers 8(11), 392–408. DOI: 10.3390/polym8110392.10.3390/polym8110392Open DOISearch in Google Scholar

20. Gotic, M. & Music, S. (2007). Mossbauer FT-IR and FE SEM investigation of iron oxides precipitated from FeSO4 solutions. J. Nanostruct. 834–836(7), 445–453. DOI: https://doi.org/10.1016/j.molstruc.2006.10.059.10.1016/j.molstruc.2006.10.059Open DOISearch in Google Scholar

21. Zhang, F., Wang, P., Koberstein, J., Khalid, S. & Chan, S.W. (2004). Cerium oxidation state in ceria nanoparticles studied with X-ray photoelectron spectroscopy and absorption near edge spectroscopy. Surf. Sci. 563(1–3), 74–82. DOI: https://doi.org/10.1016/j.susc.2004.05.138.10.1016/j.susc.2004.05.138Open DOISearch in Google Scholar

22. Bavand, R., Yelon, A. & Sacher, E. (2015). X-ray photoelectron spectroscopic and morphologic studies of Ru nanoparticles deposited onto highly oriented pyrolytic graphite. Appl. Surf. Sc. 355(5), 279–289. DOI: https://doi.org/10.1016/j.apsusc.2015.06.202.10.1016/j.apsusc.2015.06.202Open DOISearch in Google Scholar

23. Yamashita, T. & Hayes, P. (2008). Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 254(8), 2441–2449. DOI: https://doi.org/10.1016/j.apsusc.2007.09.063.10.1016/j.apsusc.2007.09.063Search in Google Scholar

24. Rahman, M.M., Khan, S.B., Faisal, M., Rub, M.A., Al-Youbi, M.A. & Asiri, A.M. (2012). Electrochemical determination of olmesartan medoxomil using hydrothermally prepared nanoparticles composed SnO2-Co3O4 nanocubes in tablet dosage forms. Talanta 99(2), 924–931. DOI: https://doi.org/10.1016/j.talanta.2012.07.060.10.1016/j.talanta.2012.07.060Open DOISearch in Google Scholar

25. Kon, K. & Rai, M. (2013). Metallic nanoparticles: mechanism of antibacterial action and influencing factors. J. Comp. Clin. Path. Res. 2(3), 160–2174. DOI: 10.4178/jccph/e2015020.10.4178/jccph/e2015020Open DOISearch in Google Scholar

26. Franci, G., Falanga, A., Galdiero, S., Palomba, L., Rai, M. & Morelli, G. (2015). Silver nanoparticles as potential antibacterial agents. Molecules 20(5), 8856–8874. DOI: 10.3390/molecules20058856.10.3390/20058856Open DOISearch in Google Scholar

27. Li, H., Chen, Q., Zhao, J. & Urmila, K. (2015). Enhancing the antimicrobial activity of natural extraction using the synthetic ultrasmall metal nanoparticles. Sci. Rep. 5(5), 11033–11040. DOI: 10.1038/srep11033.10.1038/srep11033Open DOISearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo