Open Access

Chiral pyrrolidinium salts derived from menthol as precursor – synthesis and properties


Cite

1. Gadenne, B., Hesemann, P. & Moreau, J.J.E. (2004). Ionic liquids incorporating camphorsulfonamide units for the Ti-promoted asymmetric diethylzinc addition to benzaldehyde. Tetrahedron Lett. 45, 8157–8160. DOI: 10.1016/j.tetlet.2004.09.038.10.1016/j.tetlet.2004.09.038Open DOISearch in Google Scholar

2. Singh, A. & Chopra, H.K. (2016). New benzimidazolium-based chiral ionic liquids: synthesis and application in enantioselective sodium borohydride reductions in water. Tetrahedron: Asymmetry 27, 448–453. DOI:10.1016/j.tetasy.2016.04.004.10.1016/j.tetasy.2016.04.004Open DOISearch in Google Scholar

3. Vasiloiu, M., Leder, S., Gaertner, P., Mereiter, K. & Bica, K. (2013). Coordinating chiral ionic liquids. Org. Biomol. Chem. 11, 8092. DOI: 10.1039/c3ob41635f.10.1039/c3ob41635f24163003Open DOISearch in Google Scholar

4. Bica, K., Gmeiner, G., Reichel, C., Lendl, B. & Gaertner, P. (2007). Microwave-Assisted Synthesis of Camphor-Derived Chiral Imidazolium Ionic Liquids and Their Application in Diastereoselective Diels–Alder Reaction. Synthesis 9, 1333–1338. DOI: 10.1055/s-2007-966018.10.1055/s-2007-966018Open DOISearch in Google Scholar

5. Baudequin, C., Bregeon, D., Levillain, J., Guillen, F., Plaquevent, J.C. & Gaumont, A.C. (2005). Chiral ionic liquids, a renewal for the chemistry of chiral solvents? Design, synthesis and applications for chiral recognition and asymmetric synthesis. Tetrahedron: Asymmetry 16, 3921–3945. DOI: 10.1016/j.tetasy.2005.10.026.10.1016/j.tetasy.2005.10.026Open DOISearch in Google Scholar

6. Kapnissi-Christodoulou, C.P., Stavrou, I.J. & Mavroudi, M.C. (2014). Chiral ionic liquids in chromatographic and electrophoretic separations. J. Chromatogr. A 1363, 2–10. DOI: 10.1016/j.chroma.2014.05.059.10.1016/j.chroma.2014.05.05924913367Open DOISearch in Google Scholar

7. Zhang, Y., Du, S., Feng, Z., Du, Y. & Yan, Z. (2016). Evaluation of synergistic enantioseparation systems with chiral spirocyclic ionic liquids as additives by capillary electrophoresis. Anal. Bioanal. Chem. 408, 2543–2555. DOI: 10.1007/s00216-016-9356-8.10.1007/s00216-016-9356-826894758Open DOISearch in Google Scholar

8. Kartsova, L.A., Bessonova, E.A. & Kolobova, E.A. (2016). Ionic Liquids as Modifiers of Chromatographic and Electrophoretic Systems. J. Anal. Chem. 71(2), 141–152. DOI: 10.1134/S1061934816020064.10.1134/S1061934816020064Search in Google Scholar

9. Ishida, Y., Sasaki, D., Miyauchi, H. & Saigo, K. (2006). Synthesis and properties of a diastereopure ionic liquid with planar chirality. Tetrahedron Lett. 47, 7973–7976. DOI: 10.1016/j.tetlet.2006.08.101.10.1016/j.tetlet.2006.08.101Open DOISearch in Google Scholar

10. Winkel, A. & Wilhelm, R. (2010). New Chiral Ionic Liquids Based on Enantiopure Sulfate and Sulfonate Anions for Chiral Recognition. Eur. J. Org. Chem. 5817–5824. DOI: 10.1002/ejoc.201000801.10.1002/ejoc.201000801Search in Google Scholar

11. Santamarta, F., Vilas, M., Tojo, E. & Fall, Y. (2016). Synthesis and properties of novel chiral imidazolium-based ionic liquids derived from carvone. RSC Adv. 6, 31177. DOI: 10.1039/c6ra00654j.10.1039/C6RA00654JOpen DOISearch in Google Scholar

12. Bwambok, D.K., Marwani, H.M., Fernand, V.E., Fakayode, S.O., Lowry, M., Negulescu, I., Strongin, R. M. & Warner, I.M. (2008). Synthesis and Characterization of Novel Chiral Ionic Liquids and Investigation of their Enantiomeric Recognition Properties. Chirality 20(2), 151–158. DOI: 10.1002/chir.20517.10.1002/chir.20517265042218092298Open DOISearch in Google Scholar

13. Kataev, V.E., Strobykina, I.Yu. & Zakharova, L.Ya. (2014). Quaternary ammonium derivatives of natural terpenoids. Synthesis and properties. Russ. Chem. Bull. Int. Ed. 63(9), 1884—1900. DOI: 10.1007/s11172-014-0680-x.10.1007/s11172-014-0680-xOpen DOISearch in Google Scholar

14. Nageshwar, D., Muralimahan, D.R., Acharyulu, P.V.R. (2009). Terpenes to Ionic Liquids: Synthesis and Characterization of Citronellal-Based Chiral Ionic Liquids. Synthetic Commun. 39, 3357–3368. DOI: 10.1080/00397910902768226.10.1080/00397910902768226Open DOISearch in Google Scholar

15. Wang, Y. (2003). Synthesis and application of novel chiral ionic liquids derived from alpha-pinene. M.Sc. thesis. Newark, NJ: New Jersey Institute of Technology, Department Chemistry and Environmental Science.Search in Google Scholar

16. Nobuoka, K., Kitaoka, S., Kunimitsu, K., Iio, M., Harran, T., Wakisaka, A. & Ishikawa, Y. (2005). Camphor Ionic Liquid: Correlation between Stereoselectivity and Cation-Anion Interaction. J. Org. Chem. 70, 10106–10108. DOI: 10.1021/jo051669x.10.1021/jo051669x16292848Open DOISearch in Google Scholar

17. Santamarta, F., Vilas, M., Tojo, E. & Fall, Y. (2016). Synthesis and properties of novel chiral imidazoliumbased ionic liquids derived from carvone. RSC Adv. 6, 31177–31180. DOI: 10.1039/c6ra00654j.10.1039/C6RA00654JOpen DOISearch in Google Scholar

18. Matos, R.A.F. & Andrade, C.K.Z. (2008). Synthesis of new chiral ionic liquids based on (-)-menthol and (-)-borneol. Tetrahedron Lett. 49, 1652–1655. DOI: 10.1016/j.tetlet.2008.01.011.10.1016/j.tetlet.2008.01.011Open DOISearch in Google Scholar

19. Pernak, J. & Feder-Kubis, J. (2005). Synthesis and Properties of Chiral Ammonium-Based Ionic Liquids. Chem. Eur. J. 11, 4441–4449. DOI: 10.1002/chem.200500026.10.1002/chem.20050002615883984Open DOISearch in Google Scholar

20. Feder-Kubis, J. & Pernak, J. (2006). Chiral pyridinium-based ionic liquids containing the (1R,2S,5R) -( )-menthyl group. Tetrahedron: Asymmetry 17, 1728–1737. DOI: 10.1016/j.tetasy.2006.06.014.10.1016/j.tetasy.2006.06.014Open DOISearch in Google Scholar

21. Feder-Kubis, J., Kubicki, M. & Pernak, J. (2010). 3-Alkoxymethyl-1-(1R,2S,5R)-( )-menthoxymethylimidazolium salts-based chiral ionic liquids. Tetrahedron: Asymmetry 21, 2709–2718. DOI: 10.1016/j.tetasy.2010.10.029.10.1016/j.tetasy.2010.10.029Open DOISearch in Google Scholar

22. Hardcare, Ch., Holbrey, J.D., Nieuwenhuyzen, M., Youngs, T.G.A. (2007). Structure and Solvation in Ionic Liquids. Acc. Chem. Res.40(11), 1146–1155. DOI: 10.1021/ar700068x.10.1021/ar700068xOpen DOISearch in Google Scholar

23. Bonanni, M., Soldaini, G., Faggi, C., Goti, A. & Cardona, F. (2009). Novel L-Tartaric Acid Derived Pyrrolidinium Cations for the Synthesis of Chiral Ionic Liquids. Synlett 5, 0747–0750. DOI: 10.1055/s-0028-1087950.10.1055/s-0028-1087950Open DOISearch in Google Scholar

24. Shi M., Kazuta K., Satoh Y., Masaki Y. (1994). Synthesis and Investigation of C2-Symmetric Optically Active Pyrrolidinium Salts as Chiral Phase-Transfer Catalysts. Chem. Pharm. Bull. 42(12), 2625–2628. DOI: 10.1248/cpb.42.2625.10.1248/cpb.42.2625Open DOISearch in Google Scholar

25. Liang, Y., Ling, D., Hu, Z. & Cao, D. (2015). Synthesis and Physicochemical Characterization of Chiral Pyrrolidinium-Based Surfactants. J. Disper. Sci. Technol. 36, 831–837. DOI: 10.1080/01932691.2014.926252.10.1080/01932691.2014.926252Open DOISearch in Google Scholar

26. Nobuoka, K., Kitaoka, S., Kojima, T., Kawano, Y., Hirano, K., Tange, M., Obata, S., Yamamoto, Y., Harran, T. & Ishikawa, Y. (2014). Proline Based Chiral Ionic Liquids for Enantioselective Michael Reaction. Org.Chem. Inter.1–9. DOI: 10.1155/2014/836126.10.1155/2014/836126Open DOISearch in Google Scholar

27. Raju, C.M.H., Dubey, P.K. & Acharyulu, P.V.R. (2008). Synthesis and Characterization of the First Pyrrolidine-Based Chiral Ionic Liquids. Synt. Commun. 38, 1439–1447. DOI: 10.1080/00397910801916140.10.1080/00397910801916140Open DOISearch in Google Scholar

28. Kitazume, T. (2001). Optically Active Ionic Liquids. U.S. Patent No. 20010031875A1. United States Patent Application.Search in Google Scholar

29. Fisher, T., Sethi, A., Welton, T. & Woolf, J. (1999). Diels-Alder Reaction in Room-Temperature Ionic Liquids. Tetrahedron Lett. 40, 793–796. DOI: 10.1016/S0040-4039(98)02415-0.10.1016/S0040-4039(98)02415-0Open DOISearch in Google Scholar

30. Aggarwal, A., Lancaster, N.L., Sethi, A.R. & Welton, T. (2002). The role of hydrogen binding in controlling the selectivity of Diels-Alder reactions in room-temperature ionic liquids. Green Chem. 4, 517–520. DOI: 10.1039/b206472c.10.1039/b206472cOpen DOISearch in Google Scholar

31. Janus E., Goc-Maciejewska, I. Łożyński, M. & Pernak, J. (2006). Diels-Alder reaction in protic ionic liquids. Tetrahedron Lett. 47, 4079–4083. DOI: 10.1016/j.tetlet.2006.03.172.10.1016/j.tetlet.2006.03.172Open DOISearch in Google Scholar

32. Stefaniak, W., Janus, E. & Milchert, E. (2011). Diels-Alder reaction of cyclopentadiene and alkyl acrylates in the presence of pyrrolidinium ionic liquids with various anions. Catal. Lett. 141, 742–747. DOI: 10.1007/s10562-011-0558-6.10.1007/s10562-011-0558-6Open DOISearch in Google Scholar

33. Janus, E., Bittner, B. (2010). Triethylsulfonium bistriflimide as the reaction medium in catalyzed and uncatalyzed cycloaddition [4+2]. Catal. Lett. 134, 147–154. DOI: 10.1007/s10562-009-0211-9.10.1007/s10562-009-0211-9Open DOISearch in Google Scholar

34. Janus, E. & Stefaniak, W. (2008). The Diels-Alder reaction in phosphonium ionic liquid catalysed by metal chlorides, triflates and triflimides. Catal. Lett. 124, 105–110. DOI: 10.1007/s10562-008-9431-7.10.1007/s10562-008-9431-7Open DOISearch in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering