Open Access

Vibration electrospinning of Polyamide-66/Multiwall Carbon Nanotube Nanocomposite: introducing electrically conductive, ultraviolet blocking and antibacterial properties


Cite

1. Cai, J.Y. & Min, J. et al. (2014). Enhanced mechanical performance of CNT/Polymer composite yarns by γ-irradiation. Fibers Polym. 15(2), 322–325. DOI: 10.1007/s12221-014-0322-9.10.1007/s12221-014-0322-9Open DOISearch in Google Scholar

2. Chien, A-T. & Cho, S. et al. (2014). Electrical conductivity and Joule heating of polyacrylonitrile/carbon nanotube composite fibers. Polymer 55(26), 6896–6905. DOI: http://dx.doi.org/10.1016/j.polymer.2014.10.064.10.1016/j.polymer.2014.10.064Open DOISearch in Google Scholar

3. Dallmeyer, I. & Lin, L.T. et al. (2014). Preparation and Characterization of Interconnected, Kraft Lignin-Based Carbon Fibrous Materials by Electrospinning. Macromol. Mater. Engine. 299(5), 540–551. DOI: 10.1002/mame.201300148.10.1002/mame.201300148Open DOISearch in Google Scholar

4. Hunley, M.T. & Pötschke, P. et al. (2009). Melt Dispersion and Electrospinning of Non-Functionalized Multiwalled Carbon Nanotubes in Thermoplastic Polyurethane. Macromol. Rapid Commun. 30(24), 2102–2106. DOI: 10.1002/marc.200900393.10.1002/marc.200900393Open DOISearch in Google Scholar

5. Inagaki, M. & Yang, Y. et al. (2012). Carbon Nanofibers Prepared via Electrospinning. Adv. Mater. 24(19), 2547–2566. DOI: 10.1002/adma.201104940.10.1002/adma.201104940Open DOISearch in Google Scholar

6. Karimi, L. & Zohoori, S. et al. (2014). Multi-wall carbon nanotubes and nano titanium dioxide coated on cotton fabric for superior self-cleaning and UV blocking. New Carbon Mater. 29(5), 380–385. DOI: http://dx.doi.org/10.1016/S1872-5805(14)60144-X10.1016/S1872-5805(14)60144-XOpen DOISearch in Google Scholar

7. Ketpang, K. & Park, J.S. (2010). Electrospinning PVDF/PPy/MWCNTs conducting composites. Synth. Metals 160(15–16), 1603–1608. DOI: http://dx.doi.org/10.1016/j.synthmet.2010.05.022.10.1016/j.synthmet.2010.05.022Open DOISearch in Google Scholar

8. Kim, K. & Shim, H. et al. (2016). Fiber formation model for electrospinning. II. Stable jet voltage. Fibers Polym. 17(10), 1634–1640. DOI: 10.1007/s12221-016-6035-5.10.1007/s12221-016-6035-5Search in Google Scholar

9. Kimmer, D. & Slobodian, P. et al. (2009). Polyurethane/multiwalled carbon nanotube nanowebs prepared by an electrospinning process. J. Appl. Polym. Sci. 111(6), 2711–2714. DOI: 10.1002/app.29238.10.1002/app.29238Open DOISearch in Google Scholar

10. Lee, C.J. & Salehiyan, R. et al. (2016). Influence of carbon nanotubes localization and transfer on electrical conductivity in PA66/(PS/PPE)/CNTs nanocomposites. Polymer 84, 198–208. DOI: http://dx.doi.org/10.1016/j.polymer.2015.12.055.10.1016/j.polymer.2015.12.055Search in Google Scholar

11. Liu, C.K. & Lai, K. et al. (2009). Preparation of carbon nanofibres through electrospinning and thermal treatment. Polym. Int. 58(12), 1341–1349. DOI: 10.1002/pi.2669.10.1002/pi.2669Open DOISearch in Google Scholar

12. Martin, J.R. & Borchardt, L. et al. (2013). Titanium Carbide and Carbide-Derived Carbon Composite Nanofibers by Electrospinning of Ti-Resin Precursor. Chem. Ingen.Technik 85(11), 1742–1748. DOI: 10.1002/cite.201300057.10.1002/cite.201300057Open DOISearch in Google Scholar

13. Mirjalili, M. & Zohoori, S. (2016). Review for application of electrospinning and electrospun nanofibers technology in textile industry. J. Nanostruct. Chem. 6(3), 207–213. DOI: 10.1007/s40097-016-0189-y.10.1007/s40097-016-0189-yOpen DOISearch in Google Scholar

14. Mohiuddin, M. & Van Hoa, S. (2011). Electrical resistance of CNT-PEEK composites under compression at different temperatures. Nanoscale Res. Lett. 6(1), 1–5. DOI: 10.1186/1556-276x-6-419.10.1186/1556-276x-6-419Open DOISearch in Google Scholar

15. Montazer, M. & Behzadnia, A. et al. (2011). Photo induced silver on nano titanium dioxide as an enhanced antimicrobial agent for wool. J. Photoch. Photob. B: Biology 103(3), 207–214. DOI: http://dx.doi.org/10.1016/j.jphotobiol.2011.03.009.10.1016/j.jphotobiol.2011.03.009Open DOISearch in Google Scholar

16. Oh, G.Y. & Ju, Y.W. et al. (2008). Adsorption of toluene on carbon nanofibers prepared by electrospinning. Sci. Tot. Environ. 393(2–3), 341–347. DOI: http://dx.doi.org/10.1016/j.scitotenv.2008.01.005.10.1016/j.scitotenv.2008.01.005Open DOISearch in Google Scholar

17. Pan, C., Ge, L.Q. et al. (2007). Fabrication of multi-walled carbon nanotube reinforced polyelectrolyte hollow nanofibers by electrospinning. Comp. Sci. Technol. 67(15–16), 3271-3277. DOI: http://dx.doi.org/10.1016/j.compscitech.2007.03.036.10.1016/j.compscitech.2007.03.036Open DOISearch in Google Scholar

18. Tian, M. & Hu, X. et al. (2016). Ultraviolet protection cotton fabric achieved via layer-by-layer self-assembly of graphene oxide and chitosan. Appl. Surf. Sci. 377, 141–148. DOI: http://dx.doi.org/10.1016/j.apsusc.2016.03.183.10.1016/j.apsusc.2016.03.183Open DOISearch in Google Scholar

19. Wu, X.F. & Rahman, A. et al. (2013). Electrospinning core-shell nanofibers for interfacial toughening and self-healing of carbon-fiber/epoxy composites. J. Appl. Polym. Sci. 129(3), 1383–1393. DOI: 10.1002/app.38838.10.1002/app.38838Open DOISearch in Google Scholar

20. Wu, Z. & Meng, L. et al. (2014). Chemically grafting carbon nanotubes onto carbon fibers by poly(acryloyl chloride) for enhancing interfacial strength in carbon fiber/unsaturated polyester composites. Fib. Polym. 15(3), 659–663. DOI: 10.1007/s12221-014-0659-0.10.1007/s12221-014-0659-0Open DOISearch in Google Scholar

21. Yang, T. & Wu, D. et al. (2011). Electrospinning of polylactide and its composites with carbon nanotubes. Polym. Compos. 32(8), 1280–1288. DOI: 10.1002/pc.21149.10.1002/pc.21149Search in Google Scholar

22. Yousef, A. & Brooks, R.M. et al. (2015). Cu0-decorated, carbon-doped rutile TiO2 nanofibers via one step electrospinning: Effective photocatalyst for azo dyes degradation under solar light. Chem. Engine. Proces.: Process Intensif. 95, 202–207. DOI: http://dx.doi.org/10.1016/j.cep.2015.06.015.10.1016/j.cep.2015.06.015Search in Google Scholar

23. Zohoori, S. & Karimi, L. et al. (2014). A novel durable photoactive nylon fabric using electrospun nanofibers containing nanophotocatalysts. J. Ind. Engine. Chem. 20(5), 2934–2938. DOI: http://dx.doi.org/10.1016/j.jiec.2013.10.062.10.1016/j.jiec.2013.10.062Open DOISearch in Google Scholar

24. Arboleda-Clemente, L. & Ares-Pernas, A. et al. (2016). Influence of polyamide ratio on the CNT dispersion in polyamide 66/6 blends by dilution of PA66 or PA6-MWCNT masterbatches. Synth. Metals 221, 134–141. DOI: https://doi.org/10.1016/j.synthmet.2016.07.030.10.1016/j.synthmet.2016.07.030Open DOISearch in Google Scholar

25. Hanaa, M. Hegab, A., El Mekawy, Zou, L., Mulcahy, D., Saint, C.P. & Ginic-Markovic, M. (2016). The Controversial Antibacterial Activity of Graphene-Based Materials. Carbon. 105, 362–76. DOI: https://doi.org/10.1016/j.carbon.2016.04.046.10.1016/j.carbon.2016.04.046Open DOISearch in Google Scholar

26. Shaobin, L., Tingying, H. Zeng, Mario Hofmann, Ehdi Burcombe, Jun Wei, Rongrong Jiang, Jing Kong & Yuan Chen. (2011). Antibacterial Activity of Graphite, Graphite Oxide, Graphene Oxide, and Reduced Graphene Oxide: Membrane and Oxidative Stress. ACS Nano 5, 6971–80. DOI: 10.1021/nn202451x.10.1021/nn202451xOpen DOISearch in Google Scholar

27. Yvonne Ligaya F. Musico, Catherine M. Santos, Maria Lourdes P. Dalida, Debora F. Rodrigues. (2014). Surface Modification of Membrane Filters Using Graphene and Graphene Oxide-Based Nanomaterials for Bacterial Inactivation and Removal, ACS Sust. Chem. & Engine. 2, 1559–65. DOI: 10.1021/sc500044p.10.1021/sc500044pOpen DOISearch in Google Scholar

28. Virender K. Sharma, Thomas J. McDonald, Hyunook Kim, Vijayendra K. Garg. (2015). Magnetic Graphene–Carbon Nanotube Iron Nanocomposites as Adsorbents and Antibacterial Agents for Water Purification. Adv. Coll. Inter. Sci. 225, 229–40. DOI: https://doi.org/10.1016/j.cis.2015.10.006.10.1016/j.cis.2015.10.006Open DOISearch in Google Scholar

29. Tengfei Tian, Xiaoze Shi, Liang Cheng, Yinchan Luo, Ziliang Dong, Hua Gong, Ligeng Xu, Zengtao Zhong, Rui Peng, and Zhuang Liu. (2014). Graphene-Based Nanocomposite as an Effective, Multifunctional, and Recyclable Antibacterial Agent. ACS Appl. Mater. & Inter. 6, 8542–48. DOI: 10.1021/am5022914.10.1021/am5022914Open DOISearch in Google Scholar

30. Oya, A., Yoshida, S., Alcaniz-Monge, J. & Linares-Solano, A. (1996). Preparation and Properties of an Antibacterial Activated Carbon Fiber Containing Mesopores. Carbon 34, 53–57. DOI: https://doi.org/10.1016/0008-6223(95)00134-4.10.1016/0008-6223(95)00134-4Open DOISearch in Google Scholar

31. Karthikeyan Krishnamoorthy, Murugan Veerapandian, Ling-He Zhang, Kyusik Yun, and Sang Jae Kim. (2012). Antibacterial Efficiency of Graphene Nanosheets against Pathogenic Bacteria Via Lipid Peroxidation. J. Phys. Chem. C. 116, 17280–87. DOI: 10.1021/jp3047054.10.1021/jp3047054Open DOISearch in Google Scholar

32. Yongbin Zhang, Syed F. Ali, Enkeleda Dervishi, Yang Xu, Zhongrui Li, Daniel Casciano, and Alexandru S. Biris. (2010). Cytotoxicity Effects of Graphene and Single-Wall Carbon Nanotubes in Neural Phaeochromocytoma-Derived Pc12 Cells. ACS Nano. 4, 3181–3186. DOI: 10.1021/nn1007176.10.1021/nn1007176Open DOISearch in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering