Open Access

Potential influence of compounds released in degradation of phytates on the course of alcoholic fermentation of high gravity mashes – simulation with analogs of these compounds


Cite

1. Pereira, F.B., Guimarães, P.M.R., Teixeira, J.A. & Domingues, L. (2010). Optimization of low-cost medium for very high gravity ethanol fermentations by Saccharomyces cerevisiae using statistical experimental designs. Bioresource Technol. 101, 7856–7863. DOI: 10.1016/j.biortech.2010.04.082.10.1016/j.biortech.2010.04.082Open DOISearch in Google Scholar

2. Rees, E.M.R. & Stewart, G.G. (1997). The effects of increased magnesium and calcium concentrations on yeast fermentation performance in high-gravity worts. J. I. Brewing 103, 287–291. DOI: 10.1002/j.2050-0416.1997.tb00958.x.10.1002/j.2050-0416.1997.tb00958.xOpen DOISearch in Google Scholar

3. Kumar, V., Sinha, A.K., Makkar, H.P.S. & Becker, K. (2010). Dietary roles of phytate and phytase in human nutrition: A review. Food Chem. 120, 945–959. DOI: 10.1016/j.foodchem.2009.11.052.10.1016/j.foodchem.2009.11.052Open DOISearch in Google Scholar

4. Dai, F., Wang, J., Zhang, S., Xu, Z. & Zhang, G. (2007). Genotypic and environmental variation in phytic acid content and its relation to protein content and malt quality in barley. Food Chem. 105, 606–611. DOI: 10.1016/j.foodchem.2007.04.019.10.1016/j.foodchem.2007.04.019Open DOISearch in Google Scholar

5. Mittal, A., Gupta, V., Singh, G., Yadav, A. & Aggarwal, N.K. (2013). Phytase: A boom in food industry. Octa. J. Biosci. 1(2), 158–169.Search in Google Scholar

6. Furakawa, K., Kitano, H., Mizoguchi, H. & Hara, S. (2004). Effect of cellular inositol content on ethanol tolerance of Saccharomyces cerevisiae in sake brewing. J. Biosci. Bioeng. 98(2), 107–113. DOI: 10.1016/S1389-1723(04)70250-9.10.1016/S1389-1723(04)70250-9Open DOISearch in Google Scholar

7. Krause, E.L., Villa-García, M.J., Henry, S.A. & Walker, L.P. (2007). Determining the effects of inositol supplementation and the opi1 mutation on ethanol tolerance of Saccharomyces cerevisiae. Ind. Biotechnol. 3, 260–268. DOI: 10.1089/ind.2007.3.260.10.1089/ind.2007.3.260275779219812714Open DOISearch in Google Scholar

8. Ding, J., Huang, X., Zhang, L., Zhao, N., Yang, D. & Zhang, K. (2009). Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae. Appl. Microbiol. Biot. 85, 253–263. DOI: 10.1007/s00253-009-2223-1.10.1007/s00253-009-2223-119756577Search in Google Scholar

9. Walker, G.M. (2000). Yeast: Physiology and Biotechnology. John Wiley & Sons Ltd, Chichester, England 56, 81–88.Search in Google Scholar

10. Vintila, T., Popa, N., Pop, G., Gergen, I. & Şumalan, R. (2015). Evaluation of fermentation parameters and yeasts selection for ethanol production from sweet sorghum juice. Rom. Biotech. Lett. 20(6), 11076–11083.Search in Google Scholar

11. De Nicola, D., Hall, N., Melville, S.G. & Walker, G.M. (2009). Influence of zinc on distiller’s yeast: cellular accumulation of zinc and impact on spirit congeners. J. I. Brewing 15(3), 265–271. DOI: 10.1002/j.2050-0416.2009.tb00379.x.10.1002/j.2050-0416.2009.tb00379.xOpen DOISearch in Google Scholar

12. Zhao, X.Q., Xue, C., Ge, X.M., Yuan, W.J., Wang, J.Y. & Bai, F.W. (2009). Impact of zinc supplementation on the improvement of ethanol tolerance and yield of self-flocculating yeast in continuous ethanol fermentation. J. Biotechnol. 139, 55–60. DOI: 10.1016/j.jbiotec.2008.08.013.10.1016/j.jbiotec.2008.08.01318938202Open DOISearch in Google Scholar

13. Kotarska, K., Czupryński, B. & Kłosowski, G. (2006). Effect of various activators on the course of alcoholic fermentation. J. Food Eng. 77, 965–971. DOI: 10.1016/j.jfoodeng.2005.08.041.10.1016/j.jfoodeng.2005.08.041Open DOISearch in Google Scholar

14. Kłosowski, G., Mikulski, D., Czupryński, B. & Kotarska, K. (2010). Characterisation of fermentation of high-gravity maize mashes with the application of pullulanase, proteolytic enzymes and enzymes degrading non-starch polysaccharides. J. Biosci. Bioeng. 109(5), 466–471. DOI: 10.1016/j.jbiosc.2009.10.024.10.1016/j.jbiosc.2009.10.024Open DOISearch in Google Scholar

15. BS EN ISO 10520:1998. Polish standard: Native starch. Determination of starch content. Ewers polarimetric method, ISBN: 0 580 30395 0.Search in Google Scholar

16. Park, H.R., Ahn, H.J., Kim, S.H., Lee, C.H., Byun, M.W. & Lee, G.W. (2006). Determination of the phytic acid levels in infant foods using different analytical methods. Food Control. 17, 727–732. DOI: 10.1016/j.foodcont.2005.05.007.10.1016/j.foodcont.2005.05.007Open DOISearch in Google Scholar

17. Cavell, A.J. (1955). The colorimetric determination of phosphorus in plant materials. J. Sci. Food Agr. 6(8), 479–480. DOI: 10.1002/jsfa.2740060814.10.1002/jsfa.2740060814Open DOISearch in Google Scholar

18. Schneider, F. (1979). Sugar Analysis. Official and tentative methods recommended by the International Commission for Uniform Methods of Sugar Analysis (ICUMSA). ICUMSA, Peterborough, 41–73.Search in Google Scholar

19. PN-ISO 7954:1999P. Polish standard: Microbiology – General guidance for enumeration of yeasts and moulds – Colony count technique at 25 degrees C.Search in Google Scholar

20. Alfenore, S., Molina-Jouve, C., Guillouet, S.E., Uribelarrea, J.L., Goma, G. & Benbadis, L. (2002). Improving ethanol production and viability of Saccharomyces cerevisiae by a vitamin feeding strategy during fed-batch process. Appl. Microbiol. Biotechnol. 60, 67–72. DOI: 10.1007/s00253-002-1092-7.10.1007/s00253-002-1092-7Open DOISearch in Google Scholar

21. PN-A-79005-8: 1997. Polish standard: Yeast. Test methods – Determination of content of phosphorus.Search in Google Scholar

22. Kłosowski, G. & Mikulski, D. (2010). The effect of raw material contamination with mycotoxins on the composition of alcoholic fermentation volatile by-products in raw spirits. Bioresource Technol. 101, 9723–9727. DOI: 10.1016/j.biortech.2010.07.085.10.1016/j.biortech.2010.07.085Open DOISearch in Google Scholar

23. Nabais, R.C., Sa-Correia, I., Viegas, C.A. & Novais, J.M. (1988). Influence of calcium ion on ethanol tolerance of Saccharomyces bayanus and alcoholic fermentation by yeast. Appl. Environ. Microb. 54(10), 2439–2446.10.1128/aem.54.10.2439-2446.1988Search in Google Scholar

24. Zeng, Y., Wei, N., Lou, M., L. Fu, L., Xiong, P. & Wang, H. (2010). Calcium chloride improve ethanol production in recombinant Zymomonas mobilis. Afr. J. Biotechnol. 9(455), 7687–7691.Search in Google Scholar

25. Ishmayana, S., Kennedy, U.J. & Learmonth, R.P. (2015). Preliminary evidence of inositol supplementation effect on cell growth, viability and plasma membrane fluidity of the yeast Saccharomyces cerevisiae. Procedia Chem. 17, 162–169. DOI: 10.1016/j.proche.2015.12.106.10.1016/j.proche.2015.12.106Open DOISearch in Google Scholar

26. Chi, Z., Kohlwein, S.D. & Paltauf, F. (1999). Role of phosphatidylinositol (PI) in ethanol production and ethanol tolerance by a high ethanol producing yeast. J. Ind. Microbiol. Biotechnol. 22, 58–63. DOI: 10.1038/sj.jim.2900603.10.1038/sj.jim.2900603Open DOISearch in Google Scholar

27. Roustan, J.L. & Sablayrolles, J.M. (2002). Modification of the acetaldehyde concentration during alcoholic fermentation and effects on fermentation kinetics. J. Biosci. Bioeng. 93(4), 367–375. DOI:10.1016/S1389-1723(02)80069-X.10.1016/S1389-1723(02)80069-XOpen DOISearch in Google Scholar

28. Moreno-Arribas, M.V. & Polo, M.C. (2009). Wine Chemistry and Biochemistry. Springer Science+Business Media, B.V., Dordrecht, The Netherlands.10.1007/978-0-387-74118-5Open DOISearch in Google Scholar

29. Li, J., Huang, W., Wang, X., Tang, T., Hua, Z. & Yan, G. (2010). Improvement of alcoholic fermentation by calcium ions under enological conditions involves the increment of plasma membrane H+-ATPase activity. World J. Microbiol. Biotechnol. 26, 1181–1186. DOI: 10.1007/s11274-009-0286-x.10.1007/s11274-009-0286-x24026921Open DOISearch in Google Scholar

30. Ribereau-Gayon, P., Glories, Y., Maujean, A. & Dubourdieu, D. (2006). Handbook of Enology, Vol. 1, The Microbiology of Wine and Vinifications. John Wiley & Sons, Ltd, Chichester, England.Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering