1. bookVolume 19 (2017): Issue 2 (June 2017)
Journal Details
First Published
03 Jul 2007
Publication timeframe
4 times per year
Open Access

Activated carbons prepared from hazelnut shells, walnut shells and peanut shells for high CO2 adsorption

Published Online: 08 Jul 2017
Volume & Issue: Volume 19 (2017) - Issue 2 (June 2017)
Page range: 38 - 43
Journal Details
First Published
03 Jul 2007
Publication timeframe
4 times per year

1. Xiao-Gen, S. & Hui-Qiang L. (2009). Discussion on low-carbon economy and low-carbon building technology. Nat. Sci. 1, 37–40. DOI: 10.4236/ns.2009.11007.10.4236/ns.2009.11007Search in Google Scholar

2. Leung, D.Y.C., Caramanna, G. & Maroto-Valer, M.M. (2014). An overview of current status of carbon dioxide capture and storage technologies. Renew. Sust. Energ. Rev. 39, 426–443. DOI: 10.1016/j.rser.2014. in Google Scholar

3. Gong, J. Michalkiewicz, B., Chen, X., Mijowska, E., Liu, J., Jiang, Z., Wen, X. & Tang, T. (2014). Sustainable Conversion of Mixed Plastics into Porous Carbon Nanosheets with High Performances in Uptake of Carbon Dioxide and Storage of Hydrogen. ACS Sustainable Chem. Eng. 2, 2837–2844. DOI: 10.1021/sc500603h.10.1021/sc500603hSearch in Google Scholar

4. Wang, Y.X., Liu, B.S. & Zheng, C. (2010). Preparation and Adsorption Properties of Corncob-Derived Activated Carbon with High Surface Area. J. Chem. Eng. 55, 4669–4676. DOI: 10.1021/je1002913.10.1021/je1002913Search in Google Scholar

5. Alves Fiuza, Jr., R., Medeiros de Jesus Neto R., Bacelar Correia, L. & Carvalho Andrade, H.M. (2015). Preparation of granular activated carbons from yellow mombin fruit stones for CO2 adsorption. J. Environ. Manage. 161, 198–205. DOI: 10.1016/j.jenvman.2015. in Google Scholar

6. Kapica-Kozar, J., Kusiak-Nejman, E., Wanag, A., Kowalczyk, Ł., Wrobel, R.J., Mozia, S. & Morawski, A.W. (2015). Alkali-treated titanium dioxide as adsorbent for CO2 capture from air. Micropor. Mesopor. Mat. 202, 241–249. DOI: 10.1016/j.micromeso.2014. in Google Scholar

7. Kapica-Kozar, J., Piróg, E., Kusiak-Nejman, E., Wrobel, R.J., Gęsikiewicz-Puchalska, A., Morawski, A.W., Narkiewicz, U. & Michalkiewicz, B. (2017). Titanium dioxide modified with various amines used as sorbents of carbon dioxide. New J. Chem. DOI: 10.1039/c6nj02808j.10.1039/C6NJ02808JSearch in Google Scholar

8. Michalkiewicz, B., Majewska, J., Kądziołka, G., Bubacz, K., Mozia, S. & Morawski, A.W. (2014). Reduction of CO2 by adsorption and reaction on surface of TiO2-nitrogen modified photocatalyst, J. CO2 Util. 5, 47–52. DOI: 10.1016/j.jcou.2013. in Google Scholar

9. Romero-Hermida, I., Santos, A., Pérez-López, R., García-Tenorio, R., Esquivias, L. & Morales-Flórez, V. (2017). New method for carbon dioxide mineralization based on phosphogypsum and aluminium-rich industrial wastes resulting in valuable carbonated by-products. J. CO2 Util. 18, 15–22. DOI: 10.1016/j.jcou.2017. in Google Scholar

10. Bradley, M.J., Ananth, R., Willauer, H.D., Baldwin, J.W., Hardy, D.R., DiMascio, F. & Williams, F.W. (2017). The role of catalyst environment on CO2 hydrogenation in a fixed-bed reactor. J. CO2 Util. 17, 1–9. DOI: 10.1016/j.jcou.2016. in Google Scholar

11. Michalkiewicz, B., Sreńscek-Nazzal, J. & Ziebro, J. (2009). Optimization of Synthesis Gas Formation in Methane Reforming with Carbon Dioxide. Catal. Lett. 129, 142–148. DOI: 10.1007/s10562-008-9797-6.10.1007/s10562-008-9797-6Search in Google Scholar

12, Pakhare, D. & Spivey, J. (2014). A review of dry (CO2) reforming of methane over noble metal catalysts. Chem. Soc. Rev. 43, 7813–7837. DOI: 10.1039/C3CS60395D.10.1039/C3CS60395DSearch in Google Scholar

13, Michalkiewicz, B. (2004). Partial oxidation of methane to formaldehyde and methanol using molecular oxygen over Fe-ZSM-5. Appl. Catal. A-Gen. 277, 147–153. DOI: 10.1016/j.apcata.2004. in Google Scholar

14. Markowska, A. & Michalkiewicz, B. (2009). Biosynthesis of methanol from methane by Methylosinus trichosporium OB3b. Chem. Pap. 63, 105–110. DOI: 10.2478/s11696-008-0100-5.10.2478/s11696-008-0100-5Search in Google Scholar

15. Michalkiewicz, B. (2003). Methane conversion to methanol in condensed phase. Kinet. Catal. 44, 801–805. DOI: 10.1023/B:KICA.0000009057.79026.0b.10.1023/B:KICA.0000009057.79026.0bSearch in Google Scholar

16. Michalkiewicz, B., Sreńscek-Nazzal, J., Tabero, P., Grzmil, B. & Narkiewicz, U. (2008). Selective methane oxidation to formaldehyde using polymorphic T, M and H forms of niobium (V) oxide as catalysts. Chem. Pap. 62, 106–113. DOI: 10.2478/s11696-007-0086-4.10.2478/s11696-007-0086-4Search in Google Scholar

17. Michalkiewicz, B. (2005). Kinetics of partial methane oxidation process over the Fe-ZSM-5 catalysts. Chem. Pap. 59, 403–408. DOI: 10.1016/j.apcata.2004. in Google Scholar

18. Michalkiewicz, B., Jarosinska, M. & Lukasiewicz, I. (2009). Kinetic study on catalytic methane esterification in oleum catalyzed by iodine. Chem. Eng. J. 154, 156–161. DOI: 10.1016/j.cej.2009. in Google Scholar

19. Michalkiewicz, B. & Balcer, S. (2012). Bromine catalyst for the methane to methyl bisulfate reaction. Pol. J. Chem. Technol. 14, 19–21. DOI: 10.2478/v10026-012-0096-z.10.2478/v10026-012-0096-zSearch in Google Scholar

20. Michalkiewicz, B. (2011). Methane oxidation to methyl bisulfate in oleum at ambient pressure in the presence of iodine as a catalyst. Appl. Catal. A-Gen. 394, 266–268. DOI: 10.1016/j.apcata.2011. in Google Scholar

21. Michalkiewicz, B., Kalucki, K. & Sosnicki, J.G. (2003). Catalytic system containing metallic palladium in the process of methane partial oxidation. J. Catal. 215, 14–19. DOI: 10.1016/S0021-9517(02)00088-X.10.1016/S0021-9517(02)00088-XSearch in Google Scholar

22. Michalkiewicz, B. (2006). The kinetics of homogeneous catalytic methane oxidation. Appl. Catal. A-Gen. 307, 270–274. DOI: 10.1016/j.apcata.2006. in Google Scholar

23. Jarosińska, M., Lubkowski, K., Sośnicki, J.G. & Michalkiewicz, B. (2008). Application of halogens as catalysts of CH4 esterification. Catal. Lett. 126, 407–412. DOI: 10.1007/s10562-008-9645-8.10.1007/s10562-008-9645-8Search in Google Scholar

24. Majewska, J. & Michalkiewicz, B. (2014). Carbon nanomaterials produced by the catalytic decomposition of methane over Ni/ZSM-5 Significance of Ni content and temperature. New Carbon Mater. 29, 102–108. DOI: 10.1016/S1872-5805(14)60129-3.10.1016/S1872-5805(14)60129-3Search in Google Scholar

25. Ziebro, J., Lukasiewicz, I., Borowiak-Palen, E. & Michalkiewicz, B. (2010). Low temperature growth of carbon nanotubes from methane catalytic decomposition over nickel supported on a zeolite. Nanotechnology 21, 1–6. DOI: 10.1088/0957-4484/21/14/145308.10.1088/0957-4484/21/14/14530820234080Search in Google Scholar

26. Ziebro, J., Skorupinska, B., Kadziolka, G. & Michalkiewicz, B. (2013). Synthesizing Multi-walled Carbon Nanotubes over a Supported-nickel Catalyst. Fuller. Nanotub. Car. N. 21, 333–345. DOI: 10.1080/1536383X.2011.613543.10.1080/1536383X.2011.613543Search in Google Scholar

27. Majewska, J. & Michalkiewicz, B. (2016). Preparation of Carbon Nanomaterials over Ni/ZSM-5 Catalyst Using Simplex Method Algorithm. Acta Phys. Pol. A 129, 153–157. DOI: 10.12693/APhysPolA. in Google Scholar

28. Ziebro, J., Lukasiewicz, I., Grzmil, B., Borowiak-Palen, E. & Michalkiewicz, B. (2009). Synthesis of nickel nanocapsules and carbon nanotubes via methane CVD. J. Alloy. Compd. 485, 695–700. DOI: 10.1016/j.jallcom.2009. in Google Scholar

29. Majewska, J. & Michalkiewicz, B. (2013). Low temperature one-step synthesis of cobalt nanowires encapsulated in carbon. Appl. Phys. A-Mater. 111, 1013–1016. DOI: 10.1007/s00339-013-7698-z.10.1007/s00339-013-7698-zSearch in Google Scholar

30. Michalkiewicz, B. & Majewska, J. (2014). Diameter-controlled carbon nanotubes and hydrogen production. Int. J. Hydrogen Energ. 39, 4691–4697. DOI: 10.1016/j.ijhydene.2013. in Google Scholar

31. Grams, J., Potrzebowska, N., Goscianska, J., Michalkiewicz, B. & Ruppert, A.M. (2016). Mesoporous silicas as supports for Ni catalyst used in cellulose conversion to hydrogen rich gas, Int. J. Hydrogen Energ. 41, 8656–8667. DOI: 10.1016/j.ijhydene.2015. in Google Scholar

32. Michalkiewicz, B. & Koren, Z.C. (2015). Zeolite membranes for hydrogen production from natural gas: state of the art. J. Porous Mat. 22, 635–46. DOI: 10.1007/s10934-015-9936-6.10.1007/s10934-015-9936-6Search in Google Scholar

33. Kapica-Kozar, J., Piróg, E., Wróbel, R.J., Mozia, S., Kusiak-Nejman, E., Morawski, A.W., Narkiewicz, U. & Michalkiewicz, B. (2016). TiO2/titanate composite nanorod obtained from various alkali solutions as CO2 sorbents from exhaust gases. Micropor. Mesopor. Mat. 231, 117–127. DOI: 10.1016/j.micromeso.2016. in Google Scholar

34. Wenelska, K., Michalkiewicz, B., Gong, J., Tang, T., Kaleńczuk, R., Chen, X. & Mijowska, E. (2013). In situ deposition of Pd nanoparticles with controllable diameters in hollow carbon spheres for hydrogen storage. Int. J. Hydrogen Energ. 38, 16179–16184. DOI: 10.1016/j.ijhydene.2013. in Google Scholar

35. Wenelska, K., Michalkiewicz, B., Chen, X. & Mijowska, E. (2014). Pd nanoparticles with tunable diameter deposited on carbon nanotubes with enhanced hydrogen storage capacity Energy 75, 549–554. DOI: 10.1016/j.energy.2014. in Google Scholar

36. Sreńscek-Nazzal, J., Kamińska, W., Michalkiewicz, B. & Koren, Z.C. (2013). Production, characterization and methane storage potential of KOH-activated carbon from sugarcane molasses. Ind. Crop. Prod. 47, 153–159. DOI: 10.1016/j.indcrop.2013. in Google Scholar

37. Alcañiz-Monge, J., Lozano-Castelló, D., Cazorla-Amorós, D. & Linares-Solano, A. (2009). Fundamentals of methane adsorption in microporous carbons. Micropor. Mesopor. Mat. 124, 110–116. DOI: 10.1016/j.micromeso.2009. in Google Scholar

38. Sun, Y., Liu, C., Su, W., Zhou, Y. & Zhou, L. (2009). Principles of methane adsorption and natural gas storage. Adsorption 15, 133–137. DOI: 10.1007/s10450-009-9157-x.10.1007/s10450-009-9157-xSearch in Google Scholar

39. Sreńscek-Nazzal, J., Narkiewicz, U., Morawski, A., Wróbel, R., Gęsikiewicz-Puchalska, A. & Michalkiewicz, B. (2016). Modification of commercial activated carbons for CO2 adsorption. Acta Phys. Pol. A 129(3), 394–401. DOI: 10.12693/APhysPolA.129.394.10.12693/APhysPolA.129.394Search in Google Scholar

40. Deng, S., Wei, H., Chen, T., Wang, B., Huang, J. & Yu, G. (2014). Superior CO2 adsorption on pine nut shell-derived activated carbons and the effective micropores at different temperatures. Chem. Eng. J. 253, 46–54. DOI: 10.1016/j.cej.2014. in Google Scholar

41. Kwiatkowski, M., Sreńscek-Nazzal, J. & Michalkiewicz, B. (2017) An analysis of the effect of the additional activation process on the formation of the porous structure and pore size distribution of the commercial activated carbon WG-12, Adsorption, accepted DOI: 10.1007/s10450-017-9867-4.10.1007/s10450-017-9867-4Search in Google Scholar

42. Sreńscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wróbel, R.J. & Michalkiewicz, B. (2015). Comparison of Optimized Isotherm Models and Error Functions for Carbon Dioxide Adsorption on Activated Carbon. J. Chem. Eng. Data 60, 3148–3158. DOI: 10.1021/acs.jced.5b00294.10.1021/acs.jced.5b00294Search in Google Scholar

43. Gesikiewicz-Puchalska, A., Zgrzebnicki, M. & Michalkiewicz, B. (2017). Improvement of CO2 uptake of activated carbons by treatment with mineral acids. Chem. Eng. J. 309, 159–171. DOI: 10.1016/j.cej.2016. in Google Scholar

44. Sreńscek-Nazzal, J. & Michalkiewicz, B. (2011). The simplex optimization for high porous carbons preparation. Pol. J. Chem. Tech. 13(4), 63–70. DOI: 10.2478/v10026-011-0051-4.10.2478/v10026-011-0051-4Search in Google Scholar

45, Savova, D., Apak, E., Ekinci, E., Yardim, F., Petrov N., Budinova, T., Razvigorova, M. & Minkova, V. (2001). Biomass conversion to carbon adsorbents and gas. Biomass Bioenerg. 21, 133–142. DOI: 10.1016/S0961-9534(01)00027-7.10.1016/S0961-9534(01)00027-7Search in Google Scholar

46. Sun, Y. & Webley, P.A. (2011). Preparation of Activated Carbons with Large Specific Surface Areas from Biomass Corncob and Their Adsorption Equilibrium for Methane, Carbon Dioxide, Nitrogen, and Hydrogen. Ind. Eng. Chem. Res. 50, 9286–9294. DOI: 10.1021/ie1024003.10.1021/ie1024003Search in Google Scholar

47. Kapica, J., Pełech, R., Przepiórski, J. & Morawski, A.W. (2002). Kinetics of the Adsorption of copper and lead ions from aqueous solution on to WD-ekstra activated carbon. Adsorpt. Sci. Technol. 20, 441–452. DOI: 10.1260/026361702320644734.10.1260/026361702320644734Search in Google Scholar

48. Przepiórski, J., Czyżewski, A., Kapica, J., Moszyński, D., Grzmil, B., Tryba, B., Mozia, S. & Morawski, A.W. (2012). Low temperature removal of SO2 traces from air by MgO-loaded porous carbons. Chem. Eng. J. 191, 147–153. DOI: 10.1016/j.cej.2012. in Google Scholar

49. Czyżewski, A., Kapica, J., Moszyński, D., Pietrzak, R., Przepiórski, J. (2013). On competitive uptake of SO2 and CO2 from air by porous carbon containing CaO and MgO. Chem. Eng. J. 226, 348–356. DOI: 10.1016/j.cej.2013.04.06110.1016/j.cej.2013.04.061Search in Google Scholar

50. Wróblewska, A. & Makuch, E. (2014). Regeneration of the Ti-SBA-15 Catalyst Used in the Process of Allyl Alcohol Epoxidation with Hydrogen Peroxide. J. Adv. Oxid. Technol. 17(1), 44–52. DOI: 10.1515/jaots-2014-0106.10.1515/jaots-2014-0106Search in Google Scholar

51. Wróblewska, A. (2014). The Epoxidation of Limonene over the TS-1 and Ti-SBA-15 Catalysts. Molecules 19, 19907–19922. DOI: 10.3390/molecules191219907.10.3390/molecules191219907627093325460313Search in Google Scholar

52. Wróblewska, A., Ławro, E. & Milchert, E. (2006). Technological Parameter Optimization for Epoxidation of Methallyl Alcohol by Hydrogen Peroxide over TS-1 Catalyst. Ind. Eng. Chem. Res. 45, 7365–7373. DOI: 10.1021/ie0514556.10.1021/ie0514556Search in Google Scholar

53. Wróblewska, A. (2006). Optimization of the reaction parameters of epoxidation of allyl alcohol with hydrogen peroxide over TS-2 catalyst. Appl. Catal. A-Gen. 309, 192–200. DOI: 10.1016/j.apcata.2006. in Google Scholar

54. Chen, Y., Zhu, Y., Wang, Z., Li, Y., Wang, L., Ding, L., Gao, X., Ma, Y. & Guo, Y. (2011). Application studies of activated carbon derived from rice husks produced by chemical-thermal process—A review. Adv. Coll. Int. Sci. 163, 39–52. DOI: 10.1016/j.cis.2011. in Google Scholar

55. Młodzik, J., Wróblewska, A., Makuch, E., Wróbel, R.J. & Michalkiewicz, B. (2016). Fe/EuroPh catalysts for limonene oxidation to 1,2-epoxylimonene, its diol, carveol, carvone and perillyl alcohol. Catal. Today 268, 111–120. DOI: 10.1016/j.cattod.2015. in Google Scholar

56. Wróblewska, A., Makuch, E., Młodzik, J., Koren, Z. & Michalkiewicz, B. (2016). Fe/Nanoporous Carbon Catalysts Obtained from Molasses for the Limonene Oxidation Process. Catal. Lett. DOI: 10.1007/s10562-016-1910-7.10.1007/s10562-016-1910-7Search in Google Scholar

57. Wróblewska, A., Makuch, E., Młodzik, J. & Michalkiewicz, B. (2016). Fe-carbon nanoreactors obtained from molasses as efficient catalysts for limonene oxidation. Green Process. Synth. DOI: 10.1515/gps-2016-014810.1515/gps-2016-0148Search in Google Scholar

58. Adib Yahya, M., Al-Qodah, Z. & Zanariah Ngah, C.W. (2015). Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renew. Sust. Energ. Rev. 46, 218–235. DOI: 10.1016/j.rser.2015. in Google Scholar

59. Rashidi, N.A., Yusup, S. & Borhan, A. (2014). Development of Novel Low-Cost Activated Carbon for Carbon Dioxide Capture. Int. J. Chem. Eng. Appl. 5(29), 90–94. DOI: 10.7763/IJCEA.2014.V5.357.10.7763/IJCEA.2014.V5.357Search in Google Scholar

60. Aygun, A., Yenisoy-Karakas, S. & Duman, I. (2003). Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties. Micropor. Mesopor. Mat. 66, 189–195. DOI: 10.1016/j.micromeso.2003. in Google Scholar

61. Glonek, K., Sreńscek-Nazzal, J., Narkiewicz, U., Morawski, A., Wróbel, R. & Michalkiewicz, B. (2016). Preparation of Activated Carbon from Beet Molasses and TiO2 as the Adsorption of CO2. Acta. Phys. Pol. A 129(1), 158–161. DOI: 10.12693/APhysPolA. in Google Scholar

62. Młodzik, J., Sreńscek-Nazzal, J., Narkiewicz, U., Morawski, A., Wróbel, R. & Michalkiewicz, B. (2016). Activated carbons from molasses as CO2 sorbents. Acta. Phys. Pol. A 129(3), 402–404. DOI: 10.1269/APhysPolA.129.402.Search in Google Scholar

63. Serafin, J., Narkiewicz, U., Morawski, A.W., Wróbel, R.J. & Michalkiewicz, B. Highly microporous activated carbons from biomass for CO2 capture and effective micropores at different conditions. J. CO2 Utilization.Search in Google Scholar

64. Deng, S., Hu, B., Chen, T., Wang, B., Huang, J., Wang, Y. & Yu, G. (2015). Activated carbons prepared from peanut shell and sunflower seed shell for high CO2 adsorption. Adsorption 21, 125–133. DOI 10.1007/s10450-015-9655-y.10.1007/s10450-015-9655-ySearch in Google Scholar

65. Kwiatkowski, M., Fierro, V. & Celzard, A. (2017). Numerical studies of the effects of process conditions on the development of the porous structure of adsorbents prepared by chemical activation of lignin with alkali hydroxides. J. Coll. Int. Sci. 486, 277–286. DOI: 10.1016/j.jcis.2016. in Google Scholar

66. Kwiatkowski, M. & Broniek, E. (2013). Application of the LBET class adsorption models to the analysis of microporous structure of the active carbons produced from biomass by chemical activation with the use of potassium carbonate. J. Coll. Int. Sci. 427, 47–52. DOI: 10.1016/j.colsurfa.2013. in Google Scholar

67. Kwiatkowski, M. & Broniek, E. (2012). Application of the LBET class adsorption models to analyze influence of production process conditions on the obtained microporous structure of activated carbons. Coll. Surf. A. 411, 105–110. DOI: 10.1016/j.colsurfa.2012. in Google Scholar

68. Rechnia, P., Malaika, A., Najder-Kozdrowska, L. & Kozłowski, M. (2012). The effect of ethanol on carbon-catalysed decomposition of methane. Int. J. Hydrogen Energy 37, 7512–7520. DOI: 10.1016/j.ijhydene.2012. in Google Scholar

69. Sayan, E. (2006). Ultrasound-assisted preparation of activated carbon from alkaline impregnated hazelnut shell: An optimization study on removal of from aqueous solution. Chem. Eng. J. 115, 213–218. DOI: 10.1016/j.cej.2005. in Google Scholar

70. Unur, E. (2013). Functional nanoporous carbons from hydrothermally treated biomass for environmental purification. Micropor. Mesopor. Mat. 168, 92–101. DOI: 10.1016/j.micromeso.2012. in Google Scholar

71. Gonzalez, J.F., Roman S., Gonzalez-Garcia, C.M., Valente Nabais, J.M. & Ortiz, A.L. (2009). Porosity development in activated carbons prepared from walnut shells by carbon dioxide or steam activation. Ind. Eng. Chem. Res. 48, 7474–7481. DOI: 10.1021/ie801848x.10.1021/ie801848xSearch in Google Scholar

72. Li, D., Tian, Y., Li, L., Li, J. & Zhang, H. (2015). Production of highly microporous carbons with large CO2 uptakes at atmospheric pressure by KOH activation of peanut shell char. J. Porous. Mater. 22, 1581–1588. DOI: 10.1007/s10934-015-0041-7.10.1007/s10934-015-0041-7Search in Google Scholar

73. David, E. & Kopac, J. (2014). Activated carbons derived from residual biomass pyrolysis and their CO2 adsorption capacity. J. Anal. Appl. Pyrol. 110, 322–332. DOI: 10.1016/j.jaap.2014. in Google Scholar

74. Rashidi, A.M., Kazemi, D., Izadi, N., Pourkhalil, M., Jorsaraei, A., Ganji, E. & Lotfi, R. (2016). Preparation of nanoporous activated carbon and its application as nano adsorbent for CO2 storage. Korean J. Chem. Eng. 33(2), 616–622. DOI: 10.1007/s11814-015-0149-0.10.1007/s11814-015-0149-0Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo