Open Access

Biosorption of nickel (II) and zinc (II) from aqueous solutions by the biomass of yeast Yarrowia lipolytica


Cite

1. Joo, J.H., Hassan, S.H.A. & Oh, S.E. (2010). Comparative study of biosorption of Zn2+ by Pseudomonas aeruginosa and Bacillus cereus. Int. Biodeter. Biodegr. 64, 734-741. DOI: 10.1016/j.ibiod.2010.08.007.10.1016/j.ibiod.2010.08.007Search in Google Scholar

2. Mudhoo, A., Garg, V.K. & Wang, S. (2012). Heavy Metals: Toxity and Removal by Biosorption. Lichtfouse, E., Schwarzbauer, J. & Robert, D. (Eds.), Environmental Chemistry for a Sustainable World: Volume 2: Remediation of Air and Water Pollution (pp. 379-442). Springer Science+Business Media B.V.Search in Google Scholar

3. Shinde, N.R., Bankar, A.V., Kumar, A.R. & Zinjarde, A.A. (2012). Removal of Ni (II) ions from aqueous solutions by biosorption onto two strains of Yarrowia lipolytica. J. Environ. Manag. 102, 115-124. DOI: 10.1016/j.jenvman.2012.02.026.10.1016/j.jenvman.2012.02.026Search in Google Scholar

4. Gavrilescu, M. (2010). Biosorption in Environmental Remediation. Fulekar, M.H. (Eds.) Bioremed. Technol.: Rec. Adv. (pp. 35-99). Capital Publishing Company. DOI: 10.1007/978-90-481-3678-0_1.10.1007/978-90-481-3678-0_1Search in Google Scholar

5. Wang, J. & Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnol. Adv. 27, 195-226. DOI: 10.1016/j.biotechadv.2008.11.002.10.1016/j.biotechadv.2008.11.002Search in Google Scholar

6. Beopoulos, A., Chardot, T. & Nicaud, J.M. (2009). Yarrowia lipolytica: A model and a tool to understand the mechanisms implicated in lipid accumulation. Biochimie 91, 692-696. DOI: 10.1016/j.biochi.2009.02.004.10.1016/j.biochi.2009.02.004Search in Google Scholar

7. Bankar, A.V., Kumar, A.R. & Zinjarde, S.S. (2009). Environmental and industrial applications of Yarrowia lipolytica. Appl. Microbiol. Biotechnol. 84, 847-865. DOI: 10.1007/ s00253-009-2156-8.10.1007/s00253-009-2156-8Search in Google Scholar

8. Lanciotti, R., Gianotti, A., Baldi, D., Angrisani, R., Suzzi, G., Mastrocola, D. & Guerzoni, M.E. (2005). Use of Yarrowia lipolytica strains for the treatment of olive mill wastewater. Biores. Technol. 96, 317-322. DOI: 10.1016/j.biortech.2004.04.009.10.1016/j.biortech.2004.04.009Search in Google Scholar

9. Lagergren, S. (1898). Zur theorie der sogenannten adsorptiong gelöster stoffe. Kungliga Svenska Vetenskapsakad. Stockholm: Handlingar. Bihang. 24(4), 1-39.Search in Google Scholar

10. Ho, Y.S. & McKay, G. (1999). Pseudo-second order model for sorption processes. Process. Biochem. 34(5), 451-465.10.1016/S0032-9592(98)00112-5Search in Google Scholar

11. Ertugay, N. & Bayhan, T.K. (2008). Biosorption of Cr(VI) from aqueous solution by biomass of Agaricus bisporus. J. Hazard. Mater. 154, 432-439. DOI: 10.1016/j.jhazmat.2007.10.070.10.1016/j.jhazmat.2007.10.07018078714Search in Google Scholar

12. Weber, W.J. & Morris, J.C. (1963). Intraparticle diffusion during the sorption of surfactants onto activated carbon. J. Sanit Eng. Div. Am. Soc. Civ. Eng. 89, 53-61.Search in Google Scholar

13. Blázquez, G., Martín-Lara, M.A., Tenorio, G. & Calero, M. (2011). Batch biosorption of lead(II) from aqueous solutions by olive tree pruning waste: Equilibrium, kinetics and termodynamic study. Chem. Eng. J. 168, 170-177. DOI: 10.1016/j. cej.2010.12.059.Search in Google Scholar

14. Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40(9), 1361-1403. DOI: 10.1021/ja02242a004.10.1021/ja02242a004Search in Google Scholar

15. Freundlich, H.M.F. (1906). Uber Die Adsorption in Losungen. Zeitschrift For Physikalische Chemie 57A, 385-470.Search in Google Scholar

16. Lin, Y., Wang, X., Wang, B., Mohamad, O. & Wei, G. (2012). Bioaccumulation characterization of zinc and cadmium by Streptomyces zinciresistens, a novel actinomycete. Ecotox. Environ. Safe. 77, 7-17. DOI: 10.1016/j.ecoenv.2011.09.016.10.1016/j.ecoenv.2011.09.016Search in Google Scholar

17. Yin, H., He, B., Peng, H., Ye, J., Yang, F. & Zhang, N. (2008). Removal of Cr(VI) and Ni(II) from aqueous solution by fused yeast: Study of cations release and biosorption mechanism. J. Hazard. Mater. 158, 568-576. DOI: 10.1016/j. hazmat.2008.01.113.Search in Google Scholar

18. Ahmad, M.F., Haydar, S. & Quraishi, A. (2013). Enhancement of biosorption of zinc ions from aqueous solution by immobilized Candida utilis and Candida tropicalis cells. Int. Biodeter. Biodegr. 83, 119-128. DOI: 10.1016/j.ibiod.2013.04.016.10.1016/j.ibiod.2013.04.016Search in Google Scholar

19. Asfaram, A., Ghaedi, M. & Ghezelbash, G.R. (2016). Biosorption of Zn2+, Ni2+ and Co2+ from water samples onto Yarowia lipolytica ISF7 using a response Surface mathodology, and analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES). RSC Adv. 6, 23599-23610. DOI: 10.1039/c5ra27170c.10.1039/C5RA27170CSearch in Google Scholar

20. Sari, A., Tuzen, M., Uluözlü, Ö.D. & Soylak, M. (2007). Biosorption of Pb(II) and Ni(II) from aqueous solution by lichen (Cladonia furcata) biomass. Biochem. Eng. J. 37, 151-158. DOI: 10.1016/j.bej.2007.04.007.10.1016/j.bej.2007.04.007Search in Google Scholar

21. Liu, Y., Cao, Q., Luo, F. & Chen, J. (2009). Biosorption of Cd2+, Cu2+, Ni2+ and Zn2+ ions from aqueous solutions by pretreated biomass of brown alge. J. Hazard. Mater. 163, 931-938. DOI: 10.1016/j.jhazmat.2008.07.046.10.1016/j.jhazmat.2008.07.046Search in Google Scholar

22. Özer, A. & Özer, D. (2003). Comparative study of the biosorption of Pb(II), Ni(II) and Cr(VI) ions onto S. cerevisiae: determination of biosorption heats. J. Hazard. Mater. B100, 219-229. DOI: 10.1016/S0304-3894(03)00109-2.10.1016/S0304-3894(03)00109-2Search in Google Scholar

23. Li, H., Lin, Y., Guan, W., Chang, J., Xu, L., Guo, J. & Wei, G. (2010). Biosorption of Zn(II) by loive and dead cells of Streptomyces ciscaucasicus strain CCNWHX 72-14. J. Hazard. Mater. 179, 151-159. DOI: 10.1016/j.hazmat.2010.02.072.Search in Google Scholar

24. Pahlavanzadeh, H., Keshtkar, A.R., Safdari, J. & Abadi, Z. (2010). Biosorption of nickel(II) from aqueous solution by brown alge: Equilibrium, dynamic and thermodynamic studies. J. Hazard. Mater. 175, 304-310. DOI: 10.1016/j.jhazmat.2009.10.004.10.1016/j.jhazmat.2009.10.00419880249Search in Google Scholar

25. Munagapati, V.S., Yarramuthi, V., Nadavala, S.K., Alla, S.R. & Abburi, K. (2010). Biosorption of Cu(II), Cd(II) and Pb(II) by Acacia leucocephala bark powder: Kinetics, equilibrium and thermodynamics. Chem. Eng. J. 157, 357-365. DOI: 10.1016/j. cej.2009.11.015.Search in Google Scholar

26. Subbaiah, M.V. & Yun, Y.S. (2013). Biosorption of Nickel( II) from Aqueous Solution by the Fungal Mat of Trametes versicolor (Rainbow) Biomass: Equilibrium, Kinetics, and Thermodynamic Studies. Biotechnol. Bioproc. E. 18, 280-288. DOI: 10.1007/s12257-012-0401-y.10.1007/s12257-012-0401-ySearch in Google Scholar

27. Akhtar, K., Akhtar, M.W. & Khalid, A.M. (2008). Removal and recovery of zirconium from its aqueous solution by Candida tropicalis. J. Hazard. Mater. 156, 108-117. DOI: 10.1016/j. jhazmat.2007.12.002.Search in Google Scholar

28. Baysal, Z., Çinar, E., Bulut, Y., Alkan, H. & Dogru, M. (2009). Equilibrum and thermodynamic studies on biosorption of Pb(II) onto Candida ablicans biomass. J. Hazard. Mater. 161, 62-67. DOI: 10.1016/j.hazmat.2008,02,122.Search in Google Scholar

29. Witek-Krowiak, A. (2012). Analysis of temperature-dependent biosorption of Cu2+ ions on sunfl ower hulls: Kinetics, equilibrium and mechanizm of the proces. Chem. Eng. J. 192, 13-20. DOI: 10.1016/j.cej.2012.03.075.10.1016/j.cej.2012.03.075Search in Google Scholar

30. Bueno, B.Y.M., Torem, M.L., Carvalho, R.J., Pino, G.A.H. & Mesquita, L.M.S. (2011). Fundamental aspects of biosorption of lead (II) ions onto a Rhodococcus oparus strain for environmental applications. Miner. Eng. 24, 1619-1624. DOI: 10.1016/j.mineng.2011.08.018.10.1016/j.mineng.2011.08.018Search in Google Scholar

31. Suazo-Madrid, A., Morales-Barrera, L., Aranda-García, E. & Cristiani-Urbina, E. (2011). Nickel(II) biosorption by Rhodotorula glutinis. J. Ind. Microbiol. Biot. 38, 51-64. DOI: 10.1007/s.10295-010-0828-0.Search in Google Scholar

32. Farhan, S.N. & Khadom, A.A. (2015). Biosorption of heavy metals from aqueous solutions by Saccharomyces cerevisiae. Int. J. Ind. Chem. 6, 119-130. DOI: 10.1007/s40090-015-0038-8.10.1007/s40090-015-0038-8Search in Google Scholar

33. Horsfall, M. & Spiff, A.I. (2005). Effects of temperature on the sorption of Pb2+ and Cd2+ grom aqueous solution by Caladium bicolor (Wild cocoyam) biomass. Electron. J. Biotech. 8(2), 162-169. DOI: 10.2225/vol8-issue2-fulltext-4.10.2225/vol8-issue2-fulltext-4Search in Google Scholar

34. Usul, G. & Tanyol, M. (2006). Equilibrium and thermodynamic parameters of single and binary mixture biosorption of lead (II) and copper (II) ions onto Pseudomonas putida: Effect of temperature. J. Hazard. Mater. B135, 87-93. DOI: 10.1016/j.jhazmat.2005.11.029.10.1016/j.jhazmat.2005.11.02916406287Search in Google Scholar

35. Chen, X.C., Wang, Y.P., Lin, Q., Shi, J.Y., Wu, W.X. & Chen, Y.X. (2005). Biosorption of copper(II) and zinc(II) from aqueous solution by Pseudomonas putida CZ1. Colloid Surf. B. 46, 101-107. DOI: 10.1016/j.colsurfb.2005.10.003.10.1016/j.colsurfb.2005.10.00316289732Search in Google Scholar

36. Nasernejad, B., Zadeh, T.E., pour, B.B., Bygi, M.E. & Zamani, A. (2005). Camparison for biosorption modeling of heavy metals (Cr(III), Cu(II), Zn(II)) adsorption from wastewater by carrot residues. Proces Biochem. 40, 1319-1322. DOI: 10.1016/j.procbio.2004.06.010.10.1016/j.procbio.2004.06.010Search in Google Scholar

37. Celaya, R.J., Noriega, J.A., Yeomans, J.H., Ortega, L.J. & Ruiz-Manriquez, A. (2000). Biosorption of Zn(II) by Thiobacillus ferrooxidans. Bioprocess. Eng. 22, 539-542. DOI: 10.1007/ s004499900106.10.1007/s004499900106Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering