Open Access

Preparation, characterization and rheological behavior of chitosan nanocapsule emulsion encapsulated tuberose fragrance


Cite

1. Zhu, G.Y., Xiao, Z.B., Zhou, R.J. & Zhu. Y.L. (2014). Study of production and pyrolysis characteristics of sweet orange flavor-β-cyclodextrin inclusion complex. Carbohyd. Polym. 105, 75–80. DOI: 10.1016/j.carbpol.2014.01.060.10.1016/j.carbpol.2014.01.060Search in Google Scholar

2. Chen, C.K., Law, W.C., Aalinkeelm, R., Yu, Y., Nair, B., Wu, J., Mahajan, S., Reynolds, J.L., Li, Y., Lai, C.K., Tzanakakis, E.S., Schwartz, S.A., Prasad, P.N. & Cheng, C. (2014). Biodegradable cationic polymeric nanocapsules for overcoming multidrug resistance and enabling drug–gene co-delivery to cancer cells. Nanoscale 6, 1567–1572. DOI: 10.1039/C3NR04804G.10.1039/C3NR04804GSearch in Google Scholar

3. El-Gogary, R.I., Rubio, N., Wang, J.T.W., Al-Jamal, W. T., Bourgognon, M., Kafa, H., Naeem, M., Klippstein, R., Abbate, V., Leroux, F., Bals, S., Tendeloo, G.V., Kamel, A.O., Awad, G.A.S., Mortada, N.D. & Al-Jamal, K.T. (2014). polyethylene glycol conjugated polymeric nanocapsules for targeted delivery of quercetin to folate-expressing cancer cells in vitro and in vivo. ACS Nano 8, 1384–1401. DOI: 10.1021/nn405155b.10.1021/nn405155bSearch in Google Scholar

4. Xiao, Z.B., Liu, W.L., Zhu, G.Y., Zhou, R.J. & Niu, Y.W. (2014). Production and characterization of multinuclear microcapsules encapsulating lavender oil by complex coacervation. Flavour Fragr. J. 29, 166–172. DOI: 10.1002/ffj.3192.10.1002/ffj.3192Search in Google Scholar

5. Alves, N.M. & Mano, J.F. (2008). Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. Int. J. Biol. Macromol. 43, 401–414. DOI: 10.1016/j.ijbiomac.2008.09.007.10.1016/j.ijbiomac.2008.09.007Search in Google Scholar

6. Li, L.H., Deng, J.C., Deng, H.R., Liu, Z.L. & Xin, L. (2010). Synthesis and characterization of chitosan/ZnO nanoparticle composite membranes. Carbohydr. Res. 345, 994–998. DOI: 10.1016/j.carres.2010.03.019.10.1016/j.carres.2010.03.019Search in Google Scholar

7. Okamoto, Y., Kawakami, K., Miyatake, K., Morimoto, M., Shigemasa, Y. & Minami, S. (2002). Analgesic effects of chitin and chitosan. Carbohyd. Polym. 49, 249–252. DOI: 10.1016/S0144-8617(01)00316-2.10.1016/S0144-8617(01)00316-2Search in Google Scholar

8. Anitha, A., Deepa, N., Chennazhi, K. P., Nair, S. V., Tamura, H. & Jayakumar, R. (2011). Preparation, characterization, in vitro drug release and biological studies of curcumin loaded dextran sulphate–chitosan nanoparticles. Carbohyd. Polym. 83, 66–73. DOI: 10.1016/j.carbpol.2011.01.005.10.1016/j.carbpol.2011.01.005Search in Google Scholar

Zhang, Y.Q., Chen, J.J., Zhang, Y.D., Pan, Y.F., Zhao, J.F., Ren, L.F., Liao, M.M., Hu, Z.Y., Kong, L. & Wang, J.W. (2007). A novel PEGylation of chitosan nanoparticles for gene delivery. Biotech. Appl Biochem. 46, 197–204. DOI: 10.1042/BA20060163.10.1042/BA2006016317147512Search in Google Scholar

10. Moura, M.R., Aouada, F.A., Avena-Bustillos, R.J., McHugh, T.H., Krochta, J.M. & Mattoso, L.H. (2009). Improved barrier and mechanical properties of novel hydroxypropyl methylcellulose edible films with chitosan/tripolyphosphate nanoparticles. J. Food Eng. 92, 448–453. DOI: 10.1016/j.jfoodeng.2008.12.015.10.1016/j.jfoodeng.2008.12.015Search in Google Scholar

11. Jayakumar, R., Menon, D., Manzoor, K., Nair, S.V. & Tamura, H. (2010). Biomedical applications of chitin and chitosan based nanomaterials—A short review. Carbohyd. Polym. 82, 227–232. DOI: 10.1016/j.carbpol.2010.04.074.10.1016/j.carbpol.2010.04.074Search in Google Scholar

12. Li, Q., Mahendra, S., Lyon, D.Y., Brunet, L., Liga, M. V., Li, D. & Alvarez, P.J. (2008). Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res. 42, 4591–4602. DOI: 10.1016/j.watres.2008.08.015.10.1016/j.watres.2008.08.01518804836Search in Google Scholar

13. Kim, D.G., Jeong, Y.I., Choi, C., Roh, S.H., Kang, S.K., Jang, M.K., & Nah, J.W. (2006). Retinol-encapsulated low molecular water-soluble chitosan nanoparticles. Int. J. Phytoremediat. 319, 130–138. DOI: 10.1016/j.ijpharm.2006.03.040.10.1016/j.ijpharm.2006.03.04016713152Search in Google Scholar

14. Songsurang, K., Praphairaksit, N., Siraleartmukul, K., & Muangsin, N. (2011). Electrospray fabrication of doxorubicin-chitosan-tripolyphosphate nanoparticles for delivery of doxorubicin. Arch. Pharm. Res. 34, 583–592. DOI: 10.1007/s12272-011-0408-5.10.1007/s12272-011-0408-521544723Search in Google Scholar

15. Xu, Y. & Hanna, M.A. (2007). Electrosprayed bovine serum albumin-loaded tripolyphosphate cross-linked chitosan capsules: synthesis and characterization. J. Microencapsul. 24, 143–151. DOI: 10.1080/02652040601058434.10.1080/0265204060105843417454425Search in Google Scholar

16. Chein, R. & Huang, G. (2005). Analysis of microchannel heat sink performance using nanofluids. Appl. Therm. Eng. 25, 3104–3114. DOI: 10.1016/j.applthermaleng.2005.03.008.10.1016/j.applthermaleng.2005.03.008Search in Google Scholar

17. Nguyen, C.T., Desgranges, F., Roy, G., Galanis, N., Mare, T., Boucher, S. & Angue, M.H. (2007). Temperature and particle-size dependent viscosity data for water-based nanofluids – Hysteresis phenomenon. Int. J. Heat Fluid Fl. 28, 1492–1506. DOI: 10.1016/j.ijheatfluidflow.2007.02.004.10.1016/j.ijheatfluidflow.2007.02.004Search in Google Scholar

18. Hobbie, E.K. (2010). Shear rheology of carbon nanotube suspensions. Rheol. Acta 49, 323–334. DOI: 10.1007/s00397-009-0422-4.10.1007/s00397-009-0422-4Search in Google Scholar

19. Penkavova, V., Tihon, J. & Wein, O. (2011). Stability and rheology of dilute TiO2-water nanofluids. Nanoscale Res. Lett. 6, 273–276. DOI: 10.1186/1556-276X-6-273.10.1186/1556-276X-6-273321133721711783Search in Google Scholar

20. Chen, H., Ding, Y., Lapkin, A. & Fan, X. (2009). Rheological behaviour of ethylene glycoltitanate nanotube nanofluids. J. Nanopart. Res. 11, 1513–1520. DOI: 10.1007/s11051-009-9599-9.10.1007/s11051-009-9599-9Search in Google Scholar

21. Mahbubul, I.M., Saidur, R. & Amalina, M.A. (2012). Latest developments on the viscosity of nanofluids. Int. J. Heat Mass Tran. 55, 874–885. DOI: 10.1016/j.ijheatmasstransfer.2011.10.021.10.1016/j.ijheatmasstransfer.2011.10.021Search in Google Scholar

22. Tseng, W.J., & Chen, C.N. (2006). Dispersion and rheology of nickel nanoparticle inks. J. Mater. Sci. 41, 1213–1219. DOI: 10.1007/s10853-005-3659-z.10.1007/s10853-005-3659-zSearch in Google Scholar

23. Wang, Y., Yang, X.P., Liu, W.T., Zhang, F., Cai, Q. & Deng, X.L. (2013). Controlled release behaviour of protein-loaded microparticles prepared via coaxial or emulsion electrospray. J. Microencapsul. 30, 490–497. DOI: 10.3109/02652048.2012.752537.10.3109/02652048.2012.752537370988523346923Search in Google Scholar

24. Luckham, P.F. & Ukeje, M.A. (1999). Effect of particle size distribution on the rheology of dispersed systems. J. Col. Inter. Sci. 220, 347–356. DOI: 10.1006/jcis.1999.6515.10.1006/jcis.1999.651510607451Search in Google Scholar

25. Stoica, R., Şomoghi, R. & Ion, R.M. (2013). Preparation of chitosan-tripolyphosphate nanoparticles for the encapsulation of polyphenols extracted from rose hips. Dig. J. Nanomater. Bios. 8, 955–963.Search in Google Scholar

26. Hu, B., Pan, C.L., Sun, Y., Hou, Z.J., Ye, H. & Zeng, X.X. (2008). Optimization of Fabrication Parameters To Produce Chitosan – Tripolyphosphate Nanoparticles for Delivery of Tea Catechins. J. Agric. Food Chem. 56, 7451–7458. DOI: 10.1021/jf801111c.10.1021/jf801111c18627163Search in Google Scholar

27. Papadimitriou, S., Bikiaris, D. & Avgoustakis, K. (2008). Chitosan nanoparticles loaded with dorzolamide and pramipexole. Carbohyd. Polym. 73, 44–54. DOI: 10.1016/j.carbpol.2007.11.007.10.1016/j.carbpol.2007.11.007Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering