Open Access

Catalytic activity of Pd-Ni in the oxidation of hydrogen for the safety of nuclear power plant


Cite

1. Hanson, F.V. & Boudart, M. (1978). The reaction between H2 and O2 over supported platinum catalysts. J. Catal. 53, 56–67.10.1016/0021-9517(78)90007-6Search in Google Scholar

2. Jones, M.G. & Nevell, T.G. (1990). Oxidation of hydrogen over supported palladium. J. Catal. 122, 219–229.10.1016/0021-9517(90)90276-PSearch in Google Scholar

3. Boreskov, G.K. (1983). Catalytic activation of dioxygen. Cat. Sci. Techn. 3, 40–137.Search in Google Scholar

4. Morfin, F., Sabroux, J.C. & Renouprez, A. (2004). Catalytic combustion of hydrogen for mitigating hydrogen risk in case of a severe accident in a nuclear power plant: study of catalysts poisoning in a representative atmosphere. Appl. Catal. B-Environ 47, 47–58. DOI: 10.1016/j.apcatb.2003.07.001.10.1016/j.apcatb.2003.07.001Search in Google Scholar

5. Rousset, J.L. & Bertolini, J.C. (1996). Theory of segregation using the equivalent-medium approximation and bond-strength modifications at surfaces: Application to fcc Pd-X alloys. Phys. Rev. B 53, 4947–4957. DOI: 10.1103/PhysRevB.53.4947.10.1103/PhysRevB.53.4947Search in Google Scholar

6. Helfensteyn, S., Luyten, J., Feyaerts, L. & Creemers, C. (2003). Modelling surface phenomena in Pd-Ni alloys. Appl. Surf. Sci. 212/213, 844–849. DOI: 10.1016/S0169-4332(03)00088-6.10.1016/S0169-4332(03)00088-6Search in Google Scholar

7. Bertolini J.C. (2000). Surface stress and chemical reactivity of Pt and Pd overlayers. Appl. Catal. A-Gen 191, 15–21.10.1016/S0926-860X(99)00301-4Search in Google Scholar

8. Piccolo, L., Piednoir, A. & Bertolini, J.C. (2005). Pd-Au single-crystal surfaces: Segregation properties and catalytic activity in the selective hydrogenation of 1,3-butadiene. Surf. Sci. 592, 169–181. DOI: 10.1016/j.susc.2005.07.005.10.1016/j.susc.2005.07.005Search in Google Scholar

9. Lim, F.C.H., Zhang, J., Jin, H., Sullivan, M.B. & Wu, P. (2013). A density functional theory study of CO oxidation on Pd-Ni alloy with sandwich structure. Appl. Catal. A-Gen 451, 79–85. DOI: 10.1016/j.apcata.2012.11.015.10.1016/j.apcata.2012.11.015Search in Google Scholar

10. Moss, R.L., Pope, D. & Gibbens, H.R. (1977). Ethylene hydrogenation over nickel-palladium alloy films. J. Catal. 46, 204–213.10.1016/0021-9517(77)90200-7Search in Google Scholar

11. Hammer, B. (1998). Reactivity of a stepped surface O dissociation on Pd(211). Faraday Discuss. 110, 323–333. DOI: 10.1039/A801126E.10.1039/a801126eSearch in Google Scholar

12. Śrębowata, A., Juszczyk, W., Kaszkur, Z. & Karpiński, Z. (2007). Hydrodechlorination of 1,2-dichloroethane on active carbon supported palladium-nickel catalysts. Catal. Today 124, 28–35. DOI: 10.1016/j.cattod.2007.02.010.10.1016/j.cattod.2007.02.010Search in Google Scholar

13. Seshu Babu, N., Lingaiah, N. & Sai Prasad, P.S. (2012). Characterization and reactivity of Al2O3 supported Pd-Ni bimetallic catalysts for hydrodechlorination of chlorobenzene. Appl. Catal. B-Environ 111–112, 309–316. DOI: 10.1016/j.apcatb.2011.10.013.10.1016/j.apcatb.2011.10.013Search in Google Scholar

14. Hammer, B. & Nørskov, J.K. (2000). Theoretical surface science and catalysis-calculations and concepts. Adv. Catal. 45,71–129. DOI: 10.1016/S0360-0564(02)45013-4.10.1016/S0360-0564(02)45013-4Search in Google Scholar

15. Łomot, D. & Karpiński, Z. (2015). Hydrogen oxidation over alumina-supported palladium–nickel catalysts. Res. Chem. Intermed. 41, 9171–9179.DOI: 10.1007/s11164-015-1935-3.10.1007/s11164-015-1935-3Search in Google Scholar

16. Womes, M., Cholley, T., Le Peltier, F., Morin, S., Didillon, B. & Szydlowski-Schildknecht, N. (2005). Study of the reaction mechanisms between Pt(acac)2 and alumina surface sites Application to a new refilling technique for the controlled variation of the particle size of Pt/Al2O3 catalysts. Appl. Catal. A-Gen 283, 9–22. DOI:10.1016/j.apcata.2004.12.030.10.1016/j.apcata.2004.12.030Search in Google Scholar

17. Latusek, M.P., Heimerl R.M., Spigarelli, B.P. & Holles, J.H. (2009). Synthesis and characterization of supported bimetallic overlayer catalysts. Appl. Catal. A-Gen 358, 79–87. DOI: 10.1016/j.apcata.2009.01.038.10.1016/j.apcata.2009.01.038Search in Google Scholar

18. Heck, R., Kelber, G., Schmidt, K. & Zimmer, H.J. (1995). Hydrogen reduction following severe accidents using the dual recombiner-igniter concept. Nucl. Eng. Des. 157, 311–319.10.1016/0029-5493(95)01009-7Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering