Cite

1. Thevelein, J.M. & Assche, J.A.V. (1981). Gelatinization temperature of starch as influenced by high pressure. Carbohydr. Res. 93, 304–307. DOI: 10.1016/S0008-6215(00)80862-9.10.1016/S0008-6215(00)80862-9Search in Google Scholar

2. Muhr, A.H. & Blanshard, J.M.V. (1982). Effect of hydrostatic pressure on starch gelatinization. Carbohydr. Polym. 2, 61–74. DOI: 10.1016/0144-8617(82)90055-8.10.1016/0144-8617(82)90055-8Search in Google Scholar

3. Kudła, E. & Tomasik, P. (1992). The modification of starch by high pressure Part I: air – and oven-dried potato starch. Starch/Staerke. 44, 167–173. DOI: 10.1002/star.19920440704.10.1002/star.19920440704Search in Google Scholar

4. Stute, R., Heilbronn, R.W., Klingler, R.W., Boguslawski, S., Eshtiaghi, M.N. & Knorr, D. (1996). Effect of high pressures treatment on starches. Starch/Staerke. 48, 399–408. DOI: 10.1002/star.19960481104.10.1002/star.19960481104Search in Google Scholar

5. Douzals, J.P., Perrier-Cornet, J.M., Gervais, P. & Coquille, J.C. (1998). High-pressure gelatinization of wheat starch and properties of pressure-induced gels. J. Agric. Food Chem. 46, 4824–4829. DOI: 10.1021/jf971106p.10.1021/jf971106pSearch in Google Scholar

6. Molina-Garcia, A.D., Horridge, E., Sanz, P.D. & Martino M.N. (2007). Nanostructure of starch high-pressure treated granules discovered by low temperature scanning electron microscopy. In Mėndez-Vilas, A. & Diaz, J. (Eds.), Modern Res. Educ. Top. Micros. (719–725). Formatex.Search in Google Scholar

7. Buckow, R., Heinz, V. & Knorr, D. (2007). High pressure phase transition kinetics of maize starch. J. Food Eng. 81, 469–475. DOI: 10.1016/j.jfoodeng.2006.11.027.10.1016/j.jfoodeng.2006.11.027Search in Google Scholar

8. Błaszczak, W., Valverde, S. & Fornal, J. (2005). Effect of high pressure on the structure of potato starch. Carbohydr. Polym. 59, 377–383. DOI: 10.1016/j.carbpol.2004.10.008.10.1016/j.carbpol.2004.10.008Search in Google Scholar

9. Liu, Y., Selomulyo, V.O. & Zhou, W. (2008). Effect of high pressure on some physicochemical properties of several native starches. J. Food Eng. 88, 126–136. DOI: 10.1016/j.jfoodeng.2008.02.001.10.1016/j.jfoodeng.2008.02.001Search in Google Scholar

10. Oh, H.E., Hemar, Y., Anema, S.G., Wong, M. & Pinder, D.N. (2008). Effect of high pressure treatment on normal rice and waxy rice starch-in-water suspensions. Carbohydr. Polym. 73, 332–343. DOI: 10.1016/j.foodhyd.2007.01.0208.Search in Google Scholar

11. Baks, T., Bruins, M.E., Janssen A.E.M. & Boom, R. M. (2008). Effect of pressure and temperature on the gelatinization of starch at various starch concentrations. Biomacromolecules 9, 296–304. DOI: 10.1021/bm700814a.10.1021/bm700814a18067243Search in Google Scholar

12. Vallons, K.J.R. & Arendt, E.K. (2009). Effect of high pressure and temperature on structural and rheological properties on sorghum starch. Innov. Food Sci. Emerg. Technol. 10, 449–456. DOI: 10.1016/j.ifset.2009.06.008.10.1016/j.ifset.2009.06.008Search in Google Scholar

13. Nasehi, B. & Javaheri, S. (2012). Application of high hydrostatic pressure in modifying functional properties of starches: a review. Middle East J. Sci. Res. 11, 856–861.Search in Google Scholar

14. Schenck, F.W. (2012). Starch hydrolysates: an overview. Int. Sugar J. 1238, 82–89.Search in Google Scholar

15. Le Bail, P., Chauvet, B., Simonin, H., Rondeau-Mouro, C., Pontoire, B., Carvalho, M. & Le Bail, A. (2013). Formation and stability of amylase ligand complexes formed by high pressure treatment. Innov. Food Sci. Emerg. Technol.18, 1–6. DOI: 10.1016/j.ifset.2012.10.006.10.1016/j.ifset.2012.10.006Search in Google Scholar

16. Tester, R.F., Karkalas, J. & Qi, X. (2004). Starch-composition, fine structure and architecture. J. Cereal Sci. 39, 151–165. DOI: 10.1016/j.jcs.2003.12.001.10.1016/j.jcs.2003.12.001Search in Google Scholar

17. Liu, P.L., Hu, X.S. & Shen, Q. (2010). Effect of high hydrostatic pressure on starches. A review. Starch/Staerke. 62, 615–628. DOI 10.1002/star.201000001.10.1002/star.201000001Search in Google Scholar

18. Krupska, A., Więckowski, A.B., Słomińska, L., Jarosławski, L. & Zelonka, R. (2012). Influence of heating time and pressure treatment of potato starch on the generation of radicals: EPR studies. Carbohydr. Polym. 89, 54–60. DOI: 10.1016/j.carbpol.2012.02.037.10.1016/j.carbpol.2012.02.037Search in Google Scholar

19. Hibi, Y., Matsumoto, T. & Hagiwara, S. (1993). Effect of high pressure on the crystalline structure of various starch granules. Cereal Chem. 70, 671–676.Search in Google Scholar

20. Yang, Z., Gu, Q. & Hemar, Y. (2013). In situ study of maize starch gelatinization under ultra-high hydrostatic pressure using X-ray diffraction. Carbohydr. Polym. 97, 235–238. DOI: 10.1016/j.carbpol.2013.04.075.10.1016/j.carbpol.2013.04.075Search in Google Scholar

21. Kweon, M., Slade, L. & Levine, H. (2008). Role of glassy and crystalline transitions in the responses of corn starches to heat and high pressure treatments: Prediction of solute-induced barostability from solute-induced thermostability. Carbohydr. Polym. 72, 293–299. DOI: 10.1016/j.carbpol.2007.08.013.10.1016/j.carbpol.2007.08.013Search in Google Scholar

22. Kawai, K., Fukami, K. & Yamamoto, K. (2007). Effect of treatment pressure, holding time, and starch content on gelatinization and retrogradation properties of potato starch-water mixtures treated with high hydrostatic pressure. Carbohydr. Polym. 69, 590–596. DOI: 10.1016/j.carbpol.2007.01.015.10.1016/j.carbpol.2007.01.015Search in Google Scholar

23. Stolt, M., Oinonen, S. & Autio, K. (2001). Effect of high pressure on the physical properties of barley starch. Innov. Food Sci. Emerg. Technol. 1, 167–175. DOI: 10.1016/S1466-8564(00)00017-5.10.1016/S1466-8564(00)00017-5Search in Google Scholar

24. Bauer, B.A. & Knorr, D. (2004). Electrical conductivity: A new tool for the determination of high hydrostatic pressure-induced starch gelatinization. Innov. Food Sci. Emerg. Technol. 5, 437–442. DOI: 10.1016/j.ifset.2004.02.005.10.1016/j.ifset.2004.02.005Search in Google Scholar

25. Stankowski, J., Waplak, S., Jurga, W. & Krupski, M. (2010). Size-driven ferroelectric effects in TGS induced by high hydrostatic pressure. J. Non-Crystal. Solids. 356, 1305–1309. DOI: 10.1016/j.jnoncrysol.2010.04013.Search in Google Scholar

26. Horcas, I., Fernandez, R., Gomez-Rodriguez, J.M., Colchero, J., Gomez-Herrero, J. & Baro, A.M. (2007). WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705. DOI: org/10.1063/1.2432410.Search in Google Scholar

27. Chena, L., Renb, F., Zhanga, Z., Tonga, Q. & Rashedb, M.M.A. (2015). Effect of pullulan on the short-term and long-term retrogradation of rice starch. Carbohydr. Polym. 115, 415–421. DOI: 10.1016/j.carbpol.2014.09.006.10.1016/j.carbpol.2014.09.00625439913Search in Google Scholar

28. Zielonka, R., Jarosławski, L. & Słomińska, L. (2010). Elaboration and comparison of methods for efficient determination of starch hydrolysis. Zesz. Probl. Postęp. Nauk Rol. 557, 423–433. DOI: 10.2478/pjct-2013-0037.10.2478/pjct-2013-0037Search in Google Scholar

29. Nowotny, F. (1969). Ogólne właściwości skrobi. In Nowotny, F. (Eds.), Skrobia (pp. 18–32). Warszawa, Poland: WNT.Search in Google Scholar

30. Lisińska, G. & Leszczyński, W. (1989). Potato Science and Technology. London & New York: Elsevier Applied Science.Search in Google Scholar

31. Gallant, D.J., Bouchet, B. & Baldwin, P.M. (1997). Microscopy of starch: evidence of a new level of granule organization. Carbohydr. Polym. 32, 177–191. DOI:10.1016/S0144-8617(97)00008-8.10.1016/S0144-8617(97)00008-8Search in Google Scholar

32. Krok, F., Szymońska, J., Tomasik, P. & Szymoński, M. (2000). Non-contact AFM investigation of influence of freezing process on the surface structure of potato starch granule. Appl. Surf. Sci. 157, 4, 382–386. DOI: 10.1016/S0169-4332(99)00554-1.10.1016/S0169-4332(99)00554-1Search in Google Scholar

33. Baker, A.A., Miles, M.J. & Helbert, W. (2001). Internal structure of the starch granule revealed by AFM. Carbohyd. Res. 330, 249–256. DOI: 10.1016/S0008-6215(00)00275-5.10.1016/S0008-6215(00)00275-5Search in Google Scholar

34. Szymońska, J. & Krok, F. (2003). Potato starch granule nanostructure studied by high resolution non-contact AFM. Int. J. Biol. Macromol. 33(1–3), 1–7. DOI: 10.1016/S0141-8130(03)00056-4.10.1016/S0141-8130(03)00056-4Search in Google Scholar

35. Juszczak, L. (2003). Surface of triticale starch granules – NC-AFM observations. Electron. J. Pol. Agric. Univ. 6, 1–10.Search in Google Scholar

36. Thomson, N.H., Miles, M.J., Ring, S.G., Shewry, P.R. & Tatham, A.S. (1994). Real-time imaging of enzymatic degradation of starch granules by atomic force microscopy. J. Vac. Sci. Technol. (N. Y., NY, U. S.) 12, 1565–1568. DOI: org/10.1116/1.587287.Search in Google Scholar

37. Fannon, J.E., Hauber, R.J. & BeMiller J.N. (1992). Surface pores of starch granules. Cereal Chem. 69, 284–288.Search in Google Scholar

38. Stevenson, D.G., Doorenbos, R.K., Jane, J. & Inglett, G.E. (2006). Structures and functional properties of starch from seeds of three soybean (Glycine max (L.) Merr.) varieties. Starch/Staerke. 58, 509–519. DOI: 10.1002/star.200600534.10.1002/star.200600534Search in Google Scholar

39. Kudła, E. & Tomasik, P. (1992). The modification of starch by high pressure Part II: Compression of starch with additives. Starch/Staerke. 44, 253–259. DOI: 10.1002/star.19920440704.10.1002/star.19920440704Search in Google Scholar

40. Katopo, H., Song, Y. & Jane, J. (2002). Effect and mechanism of ultrahigh hydrostatic pressure on the structure and properties of starches. Carbohydr. Polym. 47, 233–244. DOI: 10.1016/S0144-8617(01)00168-0.10.1016/S0144-8617(01)00168-0Search in Google Scholar

41. Liu, H., Yu, L., Dean, K., Simon, G., Petinakis, E. & Chen, L. (2009). Starch gelatinization under pressure studied by high pressure DSC. Carbohydr. Polym. 75, 395–400. DOI: 10.1016/j.carbpol.2008.07.034.10.1016/j.carbpol.2008.07.034Search in Google Scholar

42. Liu, P.L., Zhang, Q., Shen, Q., Hu, X.S. & Wu, J.H. (2012). Effect of high hydrostatic pressure on modified non-crystalline granular starch of starches with different granular type and amylase content. LWT Food Sci. Technol. 47, 450–458. DOI: 10.1016/j.lwt.2012.02.005.10.1016/j.lwt.2012.02.005Search in Google Scholar

43. Li, W., Zhang, F., Lin, P., Bai, Y., Gao, L. & Shen, Q. (2011). Effect of high hydrostatic pressure on physicochemical, thermal and morphological properties of mung bean (Vigna radiata L.) starch. J. Food Eng. 103, 388–393. DOI: 10.1016/j.jfoodeng.2010.11.008.10.1016/j.jfoodeng.2010.11.008Search in Google Scholar

44. Tegge, G. (2004). Physikalische Eigenschaften. In G. Tegge, (Eds.), Stărke und Stărkederivate (pp. 37–49). Hamburg: Behr’s Verlag GmbH &Co.Search in Google Scholar

45. Tomasik, P. & Horton, D. (2012). Enzymatic conversions of starch. In D. Horton, (Eds.) Adv. Carbohyd. Chem. Biochem. (pp. 59–436). Oxford. DOI: 10.1016/B978-0-12-396523-3.00001-4.10.1016/B978-0-12-396523-3.00001-423218124Search in Google Scholar

46. Selmi, B., Marion, D., Perrier Cornet, J.M., Douzals, J.P. & Gervais, P. (2000). Amyloglucosidase hydrolysis of high-pressure and thermally gelatinized corn and wheat starches. J. Agric. Food Chem. 48, 2629–2633. DOI: 10.1021/jf991332u.10.1021/jf991332u11032475Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering