Cite

1. Suo, Y. & Hsing, I.M. (2011). Highly active rhodium/carbon nanocatalysts for ethanol oxidation in alkaline medium. J. Power Sources 196, 7945-7950. DOI: 10.1016/j.jpowsour.2011.05.048.10.1016/j.jpowsour.2011.05.048Search in Google Scholar

2. Song, S.Q., Zhou, W.J., Zhou, Z.H., Jiang, L.H., Sun, G.Q., Xin, Q., Leontidis, V., Kontou, S. & Tsiakaras, P. (2005). Direct ethanol PEM fuel cells: The case of platinum based anodes. Int. J. Hydrogen Energy 30, 995-1001. DOI: 10.1016/j. ijhydene.2004.11.006.Search in Google Scholar

3. Spinace, E.V., Linardi, M. & Neto, A.O. (2005). Co-catalytic effect of nickel in the electro-oxidation of ethanol on binary Pt-Sn electrocatalysts. Electrochem. Commun. 7, 365-369. DOI: 10.1016/j.elecom.2005.02.006.10.1016/j.elecom.2005.02.006Search in Google Scholar

4. Dutta, A., Mahapatra, S.S. & Datta, J. (2011). High performance PtPdAu nano-catalyst for ethanol oxidation in alkaline media for fuel cell applications. Int. J. Hydrogen Energy 36, 14898-14906. DOI: 10.1016/j.ijhydene.2011.02.101.10.1016/j.ijhydene.2011.02.101Search in Google Scholar

5. Sheikh, A.M., Correa, P.S., da Silva, E.L., Savaris, I.D., Amico, S.C. & Malfatti, C.F. (2013). Energy conversion using Pd-based catalysts in direct ethanol fuel cell. RE&PQJ 11. 300.10.24084/repqj11.300Search in Google Scholar

6. Modibedi, R.M., Masombuka, T. & Mathe, M.K. (2011). Carbon supported Pd-Sn and Pd-Ru-Sn nanocatalysts for ethanol electro-oxidation in alkaline medium. Int. J. Hydrogen Energy 36, 4664-4672. DOI: 10.1016/j.ijhydene.2011.01.028.10.1016/j.ijhydene.2011.01.028Search in Google Scholar

7. Pierozynski, B. (2012). On the Ethanol Electrooxidation Reaction on Catalytic Surfaces of Pt in 0.1 M NaOH. Int. J. Electrochem. Sci. 7, 4261-4271.Search in Google Scholar

8. Pierozynski, B. (2012). Ethanol Electrooxidation on PtRh and PtRu Catalytic Surfaces in 0.1 M NaOH. Int. J. Electrochem. Sci. 7, 6406-6416.Search in Google Scholar

9. Mitov, M., Chorbadzhiyska, E., Rashkov, R. & Hubenova, Y. (2012). Novel nanostructured electrocatalysts for hydrogen evolution reaction in neutral and weak acidic solutions. Int. J. Hydrogen Energy 37, 16522-16526. DOI: 10.1016/j.ijhydene.2012.02.102.10.1016/j.ijhydene.2012.02.102Search in Google Scholar

10. Dominguez-Crespo, M.A., Torres-Huerta, A.M., Brachetti- Sibaja, B. & Flores-Vela, A. (2011). Electrochemical performance of Ni-RE (RE = rare earth) as electrode material for hydrogen evolution reaction in alkaline medium. Int. J. Hydrogen Energy 36, 135-151. DOI: 10.1016/j.ijhydene.2010.09.064.10.1016/j.ijhydene.2010.09.064Search in Google Scholar

11. Solmaz, R., Gundogdu, A., Doner, A. & Kardas, G. (2012). The Ni-deposited carbon felt as substrate for preparation of Pt-modifi ed electrocatalysts: Application for alkaline water electrolysis. Int. J. Hydrogen Energy 37, 8917-8922. DOI: 10.1016/j.ijhydene.2012.03.008.10.1016/j.ijhydene.2012.03.008Search in Google Scholar

12. Bidault, F., Brett, D.J.L., Middleton, P.H., Abson, N. & Brandon, N.P. (2009). A new application for nickel foam in alkaline fuel cells. Int. J. Hydrogen Energy 34, 6799-6808. DOI: 10.1016/j.ijhydene.2009.06.035.10.1016/j.ijhydene.2009.06.035Search in Google Scholar

13. Verlato, E., Cattarin, S., Comisso, N., Gambirasi, A., Musiani, M. & Vazquez-Gomez, L. (2012). Preparation of Pd- -Modifi ed Ni Foam Electrodes and Their Use as Anodes for the Oxidation of Alcohols in Basic Media. Electrocatal 3, 48-58.10.1007/s12678-011-0075-9Search in Google Scholar

14. Grum, J. & Sturm, R. (1998). Infl uence of laser surface melt-hardening conditions on residual stresses in thin plates. Surf. Coat. Technol. 100-101, 455-458. DOI: 10.1016/S0257-8972(97)00670-1.10.1016/S0257-8972(97)00670-1Search in Google Scholar

15. Navinsek, B., Panjan, P. & Krusic, J. (1998). Hard coatings on soft metallic substrates. Surf. Coat. Technol. 98, 809-815. DOI: 10.1016/S0257-8972(97)00316-2.10.1016/S0257-8972(97)00316-2Search in Google Scholar

16. Ringleb, F., Sterrer, M. & Freund, H.J. (2014). Preparation of Pd-MgO model catalysts by deposition of Pd from aqueous precursor solutions onto Ag(0 0 1)-supported MgO(0 0 1) thin fi lms. Applied Catal. A 474, 186-193. DOI: 10.1016/j. apcata.2013.05.031.Search in Google Scholar

17. Czerwosz, E., Diduszko, R., Dluzewski, P., Keczkowska, J., Kozlowski, M., Rymarczyk, J. & Suchanska, M. (2007). Properties of Pd nanocrystals prepared by PVD method. Vacuum 82(4), 372-376. DOI: 10.1016/j.vacuum.2007.08.003.10.1016/j.vacuum.2007.08.003Search in Google Scholar

18. Diduszko, R., Kowalska, E., Kozlowski, M., Czerwosz, E. & Kaminska, A. (2013). Temperature-induced changes in the topography and morphology of C-nPd fi lms deposited on fused silica. Optica Applicata XLIII(1), 133-141. DOI: 10.5277/ oa130117.Search in Google Scholar

19. Macdonald, J.R. (1987). Impedance spectroscopy, emphasizing solid materials and systems. New York: John Wiley & Sons.Search in Google Scholar

20. Smoczyński, L., Ratnaweera, H., Kosobucka, M. & Smoczyński, M. (2014). Image analysis of sludge aggregates. Sep. Purif. Technol. 122, 412-420. DOI: 10.1016/j.seppur.2013.09.030.10.1016/j.seppur.2013.09.030Search in Google Scholar

21. Xia, X.H., Liess, H.D. & Iwasita, T. (1997). Early stages in the oxidation of ethanol at low index single crystal platinum electrodes. J. Electroanal. Chem. 437, 233-240. DOI: 10.1016/ S0022-0728(97)00404-X.10.1016/S0022-0728(97)00404-XSearch in Google Scholar

22. Abd-El-Latif, A.A., Mostafa, E., Huxter, S., Attard, G. & Baltruschat, H. Electrooxidation of ethanol at polycrystalline and platinum stepped single crystals: A study by differential electrochemical mass spectrometry. (2010). Electrochim. Acta 55, 7951. DOI: 10.1016/j.electacta.2010.04.008.10.1016/j.electacta.2010.04.008Search in Google Scholar

23. Gomes, J.F., Busson, B., Tadjeddine, A. & Tremiliosi- Filho, G. (2008). Ethanol electro-oxidation over Pt(hkl): Comparative study on the reaction intermediates probed by FTIR and SFG spectroscopies. Electrochim. Acta 53, 6899-6905. DOI: 10.1016/j.electacta.2008.01.054.10.1016/j.electacta.2008.01.054Search in Google Scholar

24. Sun, S., Jusys, Z. & Behm, R.J. (2013). Electrooxidation of ethanol on Pt-based and Pd-based catalysts in alkaline electrolyte under fuel cell relevant reaction and transport conditions. J. Power Sources 231, 122-133. DOI: 10.1016/j. jpowsour.2012.12.091.Search in Google Scholar

25. Pierozynski, B. (2011). On the Hydrogen Evolution Reaction at Nickel-Coated Carbon Fibre in 30 wt.% KOH Solution. Int. J. Electrochem. Sci. 6, 63-77.Search in Google Scholar

26. Camara, G.A. & Iwasita, T. (2005). Parallel pathway of ethanol oxidation: The effect of ethanol concentration. J. Electroanal. Chem. 578, 315-321. DOI: 10.1016/j.jelechem.2005.01.013.10.1016/j.jelechem.2005.01.013Search in Google Scholar

27. Lasia, A. & Rami, A. (1992). Kinetics of hydrogen evolution on Ni-AI alloy electrodes. J. Applied Electrochem. 22, 376-382.10.1007/BF01092692Search in Google Scholar

28. Chen, L. & Lasia, A. (1991). Study of the Kinetics of Hydrogen Evolution Reaction on Nickel-Zinc Alloy Electrodes. J. Electrochem. Soc. 138. 3321-3328. DOI: 10.1149/1.2085409.10.1149/1.2085409Search in Google Scholar

29. Pajkossy, T. (1994). Impedance of rough capacitive electrodes. J. Electroanal. Chem. 364, 111-125. DOI: 10.1016/0022-0728(93)02949-I.10.1016/0022-0728(93)02949-ISearch in Google Scholar

30. Conway, B.E. & Pierozynski, B. (2008) A.c. impedance behaviour of processes involving adsorption and reactivity of guanidonium-type cations at Pt(100) surface. J. Electroanal. Chem. 622, 10-14. DOI: 10.1016/j.jelechem.2008.04.025.10.1016/j.jelechem.2008.04.025Search in Google Scholar

31. Wang, D., Liu J., Wu, Z., Zhang, J., Su, Y., Liu, Z. & Xu C. (2009). Electrooxidation of Methanol, Ethanol and 1-Propanol on Pd Electrode in Alkaline Medium. Int. J. Electrochem. Sci. 4, 1672-1678.Search in Google Scholar

32. Xie, S.W., Chen S., Liu Z.Q. & Xu C.W. (2011). Comparison of Alcohol Electrooxidation on Pt and Pd Electrodes in Alkaline Medium. Int. J. Electrochem. Sci. 6, 882-888.Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering