1. bookVolume 62 (2017): Issue 4 (December 2017)
Journal Details
First Published
25 Mar 2014
Publication timeframe
4 times per year
Open Access

Radiation activities and application of ionizing radiation on cultural heritage at ENEA Calliope gamma facility (Casaccia R.C., Rome, Italy)

Published Online: 16 Feb 2018
Volume & Issue: Volume 62 (2017) - Issue 4 (December 2017)
Page range: 261 - 267
Received: 20 Apr 2017
Accepted: 07 Dec 2017
Journal Details
First Published
25 Mar 2014
Publication timeframe
4 times per year

Since the 1980s, research and qualification activities are being carried out at the 60Co gamma Calliope plant, a pool-type irradiation facility located at the Research Centre ENEA-Casaccia (Rome, Italy). The Calliope facility is deeply involved in radiation processing research and on the evaluation and characterization of the effects induced by gamma radiation on materials for different applications (crystals, glasses, optical fibres, polymers and biological systems) and on devices to be used in hostile radiation environment such as nuclear plants, aerospace and high energy physics experiments. All the activities are carried out in the framework of international projects and collaboration with industries and research institutions. In the present work, particular attention will be paid to the cultural heritage activities performed at the Calliope facility, focused on two different aspects: (a) conservation and preservation by bio-deteriogen eradication in archived materials, and (b) consolidation and protection by degraded wooden and stone porous artefacts consolidation.


1. Baccaro, S., Cemmi, A., Ferrara, G., & Fiore, S. (2015). Calliope gamma irradiation facility at ENEA – Casaccia R.C. (Rome). Rome, Italy: ENEA. (RT/2015/13/ENEA).Search in Google Scholar

2. Baccaro, S., & Cemmi, A. (2011). Radiation damage studies performed at the Calliope gamma irradiation plant at ENEA (Italy). Proceedings of SPIE, 8144, 17 pp. DOI: 10.1117/12.913879.10.1117/12.913879Open DOISearch in Google Scholar

3. Baccaro, S., & Cemmi, A. (2016). Optical characterization of ion-doped crystalline and glassy matrices operating under hostile environmental conditions. J. Phys.-Conf. Series, 763, 012001. DOI: 10.1088/1742-6596/763/1/012001.10.1088/1742-6596/763/1/012001Open DOISearch in Google Scholar

4. Mihokova, E., Nikl, M., Pejchal, J., Baccaro, S., Cecilia, A., Nejezchleb, K., & Vedda, A. (2007). Luminescence and scintillation properties of Y3Al5O12:Pr single crystal. Phys. Status Solidi C, 4(3), 1012–1015. DOI: 10.1002/pssc.200673710.10.1002/pssc.200673710Open DOISearch in Google Scholar

5. Angelucci, M., Atanova, O., Baccaro, S., Cemmi, A., Cordelli, M., Donghia, R., Giovannella, S., Happacher, F., Miscetti, S., Sarra, I., & Soleti, S. R. (2016). Longitudinal uniformity, time performances and irradiation test of pure CsI crystals. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 824, 678–680. http://dx.doi.org/10.1016/j.nima.2015. DOISearch in Google Scholar

6. Baccaro, S. (1996). Radiation-induced effects in ethylene-propylene copolymer with antioxidant. In R. L. Clough & S. W. Shalaby (Eds.), Irradiation of polymers. Fundamental and technological applications (Chapter 25, pp. 323–339). ACS Symp. Series, Vol. 620. DOI: 10.1021/bk-1995-0619.10.1021/bk-1995-0619Open DOISearch in Google Scholar

7. Nikl, M., Bohácek, P., Mihóková, E., Rosa, J., Martini, M., Vedda, A., Fabeni, P., Pazzi, G. P., Laguta, V., Kobayashi, M., Ishii, M., Usuki, Y., Zimmermann, D., Baccaro, S., & Cecilia, A. (2001). The doping of PbWO4 in shaping its scintillator characteristics. Radiat. Meas., 33(5), 705–708. DOI: 10.1016/S1350-4487(01)00087-7.10.1016/S1350-4487(01)00087-7Open DOISearch in Google Scholar

8. Nikl, M., Bohacek, P., Nitsch, K., Mihokova, E., Martini, M., Vedda, A., Croci, S., Pazzi, G. P., Fabeni, P., Baccaro, S., Borgia, B., Dafibei, I., Diemoz, M., Organtini, G., Auffray, E., Lecoq, P., Kobayashi, M., Ishii, M., & Usuki, Y. (1997). Decay kinetics and thermoluminescence of PbWO4: La3+. Appl. Phys. Lett., 71(26), 3755–3757. http://doi.org/10.1063/1.120409.10.1063/1.120409Search in Google Scholar

9. Baccaro, S., Bohacek, P., Borgia, B., Cecilia, A., Dafinei, I., Diemoz, M., Ishii, M., Jarolimek, O., Kobayashi, M., Martini, M., Montecchi, M., Nikl, M., Nitsch, K., Usuki, Y., & Vedda, A. (1997). Influence of La3+-doping on radiation hardness and thermoluminescence characteristics of PbWO4. Phys. Status Solidi A, 160(2), R5–R6. DOI: 10.1002/1521-396X(199704)160:2.10.1002/1521-396X(199704)160:2Open DOISearch in Google Scholar

10. Nikl, M., Nitsch, K., Baccaro, S., Cecilia, A., Montecchi, M., Borgia, B., Dafinei, I., Diemoz, M., Martini, M., Rosetta, E., Spinolo, G., Vedda, A., Kobayashi, M., Ishii, M., Usuki, Y., Jarolimek, O., & Reiche, P. (1997). Radiation induced formation of color centers in PbWO4 single crystals. J. Appl. Phys., 82(11), 5758–5762.10.1063/1.366441Search in Google Scholar

11. Baccaro, S. (1999). Recent progress in the development of lead tungstate crystals. IEEE Trans. Nucl. Sci., 46(3, Pt.1), 292–295. DOI: 10.1109/23.775531.10.1109/23.775531Open DOISearch in Google Scholar

12. Baccaro, S., Boháček, P., Cecilia, A., Cemmi, A., Croci, S., Dafinei, I., Diemoz, M., Fabeni, P., Ishii, M., Kobayashi, M., Martini, M., Mihoková, E., Montecchi, M., Nikl, M., Organtini, G., Pazzi, G. P., Usuki, Y., & Vedda, A. (2000). Influence of Gd3+ concentration on PbWO4:Gd3+ scintillation characteristics. Phys. Status Solidi A, 179(2), 445–454. DOI: 10.1002/1521-396X(200006)179:2<445::AIDPSSA445>3.0.CO;2-H.10.1002/1521-396X(200006)179:2<445::AIDPSSA445>3.0.CO;2-Open DOISearch in Google Scholar

13. Aloisio, A., Baccaro, S., Bernieri, E., Branchini, P., Budano, A., Budano, F., Cecchi, C., Cemmi, A., Corradi, G., De Lucia, E., De Nardo, G., de Sangro, R., Finocchiaro, G., Fiore, S., Giordano, R., Manoni, E., Merola, M., Montecchi, M., Oberhof, B., Passeri, A., Peruzzi, I., Piccolo, M., Rossi, A., Sciacca, S., & Tagnani, D. (2016). A pure CsI calorimeter for the Belle II experiment at SuperKEKB. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 824, 704–709. https://doi.org/10.1016/j.nima.2015. DOISearch in Google Scholar

14. Baccaro, S., Cecilia, A., Di Sarcina, I., & Piegari, A. (2005). Effect of gamma irradiation on optical components. IEEE Trans. Nucl. Sci., 52(5), 1779. DOI: 10.1109/TNS.2005.856822.10.1109/TNS.2005.856822Open DOISearch in Google Scholar

15. Baccaro, S., Cemmi, A., Di Sarcina, I., & Menchini, F. (2015). Gamma rays effects on the optical properties of cerium-doped glasses. Int. J. Appl. Glass Sci., 6(3), 295–301. DOI: 10.1111/ijag.12131.10.1111/ijag.12131Open DOISearch in Google Scholar

16. Baccaro, S., Carewska, M., Casieri, C., Cemmi, A., & Lepore, A. (2013). Structure modifications and interaction with moisture in γ-irradiated pure cellulose by thermal analysis and infrared spectroscopy. Polym. Degrad. Stabil., 98(10), 2005–2010. DOI: 10.1016/j.polymdegradstab.2013. in Google Scholar

17. Lepore, A., Baccaro, S., Casieri, C., Cemmi, A., & De Luca, F. (2012). Role of water in the ageing mechanism of paper. Chem. Phys. Lett., 531, 206–209. DOI: 10.1016/j.cplett.2012. DOISearch in Google Scholar

18. Baccaro, S., Buontempo, U., & D’Atanasio, P. (1993). Radiation induced degradation of EPR by IR oxidation profiling. Radiat. Phys. Chem., 42(1/3), 211–214. DOI: 10.1016/0969-806X(93)90236-N.10.1016/0969-806X(93)90236-Open DOISearch in Google Scholar

19. Baccaro, S., Buontempo, U., Caccia, B., Onori, S., & Pantaloni, M. (1993). ESR study of irradiated ethylene-propylene rubber. Appl. Radiat. Isot., 44(1/2), 331–335. DOI: 10.1016/0969-8043(93)90242-3.10.1016/0969-8043(93)90242-3Open DOISearch in Google Scholar

20. Bourtoom, T. (2009). Edible protein films: properties enhancement. Int. Food Res. J., 16, 1–9.Search in Google Scholar

21. Baccaro, S., Bateman, J. E., Cavallari, F., Da Ponte, V., Deiters, K., Denes, P., Diemoz, M., Kirn, Th., Lintern, A. L., Longo, E., Montecchi, M., Musienko, Y., Pansart, J. P., Renker, D., Reucroft, S., Rosi, G., Rusack, R., Ruuska, D., Stephenson, R., & Torbet, M. J. (1999). Radiation damage effect on avalanche photodiodes. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 426(1), 206–211. DOI: 10.1016/S0168-9002(98)01493-4.10.1016/S0168-9002(98)01493-4Open DOISearch in Google Scholar

22. European Space Agency. (2010, October). Total dose steady-state irradiation test method. ESA/SCC Basic Specification No. 22900. ESA. Available from https://escies.org/download/webDocumentFile?id=59310.Search in Google Scholar

23. Department of Defence USA. (May 1, 1997). Ionizing radiation (total dose) test procedure. In Test method standard microcircuits. MIL-STD-883E, method 1019.4. Available from http://scipp.ucsc.edu/groups/fermi/electronics/mil-std-883.pdf.Search in Google Scholar

24. Rossi, P., Ferri deCollibus, M., Florean, M., Monti, C., Mugnaini, G., Neri, C., Pillon, M., Pollastrone, F., Baccaro, S., Piegari, A., Damiani, C., & Dubus, G. (2013). IVVS actuating system compatibility test to ITER gamma radiation conditions. Fusion Eng. Des., 88(9/10), 2084–2087. DOI: 10.1016/j.fusengdes.2013. DOISearch in Google Scholar

25. Attix, F. H., & Roesch, W. (Eds). (1968). Radiation dosimeter. Vol. 1. New York: Academic Press.Search in Google Scholar

26. International Atomic Energy Agency. (2009). Nuclear techniques for preservation of cultural heritage artefacts. Vienna: IAEA. (TECP-RER 8/015).Search in Google Scholar

27. International Atomic Energy Agency. (2011). Nuclear techniques for cultural heritage research. Vienna: IAEA. (Radiation Technology Series no. 2).Search in Google Scholar

28. Adamo, M., Baccaro, S., & Cemmi, A. (2015). Radiation processing for bio-deteriorated archived materials and for consolidation of porous artefacts. Rome: ENEA. (Report RT/2015/5/ENEA).Search in Google Scholar

29. Głuszewski, W., Zagórski, Z. P., Tran, Q. K., & Cortella, L. (2011). Maria Skłodowska Curie – the precursor of radiation sterilization methods. Anal. Bioanal. Chem., 400, 1577–1582. DOI: 10.1007/s00216-011-4699-7.10.1007/s00216-011-4699-721327626Open DOISearch in Google Scholar

30. Hunt, D. (2012). Properties of wood in the conservation of historical wooden artefacts. J. Cult. Herit., 13, 10–15. http://doi.org/10.1016/j.culher.2012. DOISearch in Google Scholar

31. Charlesby, A. (1960). Atomic radiation and polymers. Oxford: Pergamon Press.Search in Google Scholar

32. Dole, M. (1972–1973). The radiation chemistry of macromolecules. Vols. 1, 2. New York: Academic Press.Search in Google Scholar

33. Głuszewski, W., Boruc, B., Kubera, H., & Abbasowa, D. (2015). The use of DRS and GC to study the effects of ionizing radiation on paper artifacts. Nukleonika, 60(3), 665–668. doi: 10.1515/nuka-2015-0090.10.1515/nuka-2015-0090Open DOISearch in Google Scholar

34. Adamo, M., Giovannotti, M., Magaudda, G., Plossi Zappala, M., Rocchetti, F., & Rossi, G. (1998). Effect of gamma rays on pure cellolose paper as a model for the study of a treatment of biological recovery of biodeteriorated books. Restaur.-Int. J. Preserv. Libr. Arch. Mater., 19, 41–59. https://doi.org/10.1515/rest.1998. DOISearch in Google Scholar

35. Nunes, I., Mesquita, N., Cabo Verde, S., Carolino, M. M., Portugal, A., & Botelho, M. L. (2013). Bioburden assessment and gamma radiation inactivation patterns in parchment documents. Radiat. Phys. Chem., 88, 82–89. http://dx.doi.org/10.1016/j.radphyschem.2013. DOISearch in Google Scholar

36. Bertrand, L., Schöeder, S., Anglos, D., Breeze, M. B. H., Janssens, K., Moini, M., & Simon, A. (2015). Mitigation strategies for radiation damage in the analysis of ancient materials. TRAC-Trends Anal. Chem., 66, 128–145. http://doi.org/10.1016/j.trac.2014. DOISearch in Google Scholar

37. Adamo, M., Brizzi, M., Magaudda, G., Martinelli, G., Plossi-Zappalà, M., Rocchetti, F., & Savagnone, F. (2001). Gamma radiation of paper in different environmental conditions: chemical, physical and microbiological analysis. Restaur.-Int. J. Preserv. Libr. Arch. Mater., 22(2), 107–131. DOI: 10.1515/REST.2001.107.10.1515/REST.2001.107Open DOISearch in Google Scholar

38. Rocchetti, F., Adamo, M., & Magaudda, G. (2002). Fastness of printing inks subjected to gamma ray irradiation. Restaur.-Int. J. Preserv. Libr. Arch. Mater., 23(1), 15–26. DOI: 10.1515/REST.2002.15.10.1515/REST.2002.15Open DOISearch in Google Scholar

39. Adamo, M., & Magaudda, G. (2003). Susceptibility of printed paper to attack of chewing insects after gamma radiation and aging. Restaur.-Int. J. Preserv. Libr. Arch. Mater., 24(2), 95–105. DOI: 10.1515/REST.2003.95.10.1515/REST.2003.95Open DOISearch in Google Scholar

40. Adamo, M., Magaudda, G., Trionfetti Nisini, P., & Tronelli, G. (2003). Susceptibility of cellulose to attack of cellulolytic microfungi after γ-rays irradiation and ageing. Restaur.-Int. J. Preserv. Libr. Arch. Mater., 24(3), 145–151. DOI: 10.1515/REST.2003.145.10.1515/REST.2003.145Open DOISearch in Google Scholar

41. Magaudda, G. (2004). The recovery of biodeteriorated books and archive documents through gamma radiation: some considerations on the results achieved. J. Cult. Herit., 5, 113–118. DOI: 10.1016/j.culher.2003. DOISearch in Google Scholar

42. International Organization for Standardization. (2006). Sterilization of health care products – Radiation – Part 2: Establishing the sterilization dose. ISO 11137-2. Geneva.Search in Google Scholar

43. Bouchard, J., Méthot, M., & Jordan, B. (2006). The effects of ionizing radiation on the cellulose of woodfree paper. Cellulose, 13, 601–610. DOI: 10.1007/s10570-005-9033-0.10.1007/s10570-005-9033-0Open DOISearch in Google Scholar

44. Baccaro, S., Casieri, C., Cemmi, A., Chiarini, M., D’Aiuto, V., & Tortora, M. (2015). Gamma radiation induced in-situ polymerization of consolidating products for the conservation of cultural heritage manufacts. In 4th International Symposium Frontiers in Polymer Science, 20–22 May 2015, Riva del Garda, Italy.Search in Google Scholar

45. Baccaro, S., Casieri, C., Cemmi, A., Chiarini, M., D’Aiuto, V., & Tortora, M. (2017). Characterization of γ-radiation induced polymerization in ethyl methacrylate and methyl acrylate monomers solutions. Radiat. Phys. Chem., 141, 131–137. https://doi.org/10.1016/j.radphyschem.2017. DOISearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo