Open Access

Precise determination of HPGe detector efficiency for gamma spectrometry measurements of environmental samples with variable geometry and density


Cite

1. Debertin, K., & Helmer, R. G. (1988). Gamma and X-ray spectrometry with semiconductor detectors. Amsterdam: Elsevier Science Ltd.Search in Google Scholar

2. Knoll, G. F. (2010). Radiation detection and measurement (4th ed.). New York: John Wiley & Sons.Search in Google Scholar

3. Casas-Ruiz, M., Ligero, R. A., & Barbero, L. (2012). Estimation of annual effective dose due to natural and man-made radionuclides in the metropolitan area of the Bay of Cadiz (SW of Spain). Radiat. Prot. Dosim., 150(1), 60–70.10.1093/rpd/ncr360Search in Google Scholar

4. Ligero, R. A., Casas-Ruiz, M., Barrera, M., Barbero, L., & Meléndez, M. J. (2010). An alternative radiometric method for calculating the sedimentation rates: Application to an intertidal region (SW of Spain). Appl. Radiat. Isot., 68, 1602–1609.10.1016/j.apradiso.2010.02.010Search in Google Scholar

5. Ligero, R. A., Barrera, M., & Casas-Ruiz, M. (2005). Levels of 137Cs in muddy sediments of the seabed of the Bay of Cádiz, Spain. Part I: Vertical and spatial distribution of activities. J. Environ. Radioact., 80, 75–86.10.1016/j.jenvrad.2004.05.019Search in Google Scholar

6. Ligero, R. A., Barrera, M., & Casas-Ruiz, M. (2005). Levels of 137Cs in muddy sediments on the seabed in the Bay of Cádiz, Spain. Part II: Model of vertical migration of 137Cs. J. Environ. Radioact., 80, 87–103.10.1016/j.jenvrad.2004.06.006Search in Google Scholar

7. International Organization for Standardization. (1995). Guide to the expression of uncertainty in measurement. Geneva, Switzerland: ISO.Search in Google Scholar

8. Bolívar, J. P., García-Tenorio, R., & García-León, M. (1994). A generalized transmission method for gamma-efficiency determination in soil samples. Nucl. Geophys., 8(5), 485–492.Search in Google Scholar

9. Zikovsky, L. (1997). Variation of the detection efficiency of a Ge detector with the height of the sample in Marinelli beaker. J. Radioanal. Nucl. Chem., 224, 171–172.10.1007/BF02034634Search in Google Scholar

10. Hubbell, J. H., & Seltzer, S. M. (1995). Tables of x-ray mass attenuation coefficients and mass energy-absorption coefficients 1 keV to 20 MeV for elements Z = 1 to 92 and 48 additional substances of dosimetric interest. Gaithersburg, MD: National Institute of Standards and Technology (NISTIR 5632). Available from http://physics.nist.gov/xaamdi.10.6028/NIST.IR.5632Search in Google Scholar

11. Kitto, M. E. (1990). Mass attenuation coefficients of size-fractioned soil. J. Radioanal. Nucl. Chem.-Lett., 145(3), 175–182.10.1007/BF02202022Search in Google Scholar

12. Cutshall, N. H., Larsen, I. L., & Olsen, C. R. (1983). Direct analysis of 210Pb in sediment samples: Self-absorption correction. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 206, 309–312.Search in Google Scholar

13. Galloway, R. B. (1991). Correction for sample self-absorption in activity determination by gamma spectrometry. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 300(2), 367–373.10.1016/0168-9002(91)90450-5Search in Google Scholar

14. Haase, G., Tait, D., & Wiechen, A. (1993). Monte Carlo simulation of several gamma-emitting source and detector arrangements for determining corrections of self-attenuation and coincidence summation in gamma-spectrometry. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 329(3), 483–492.10.1016/0168-9002(93)91284-TSearch in Google Scholar

15. Pham, M. K., Sanchez-Cabeza, J. A., Povinec, P. P., Andor, K., Arnold, D., Benmansour, M., Bikit, I., Carvalho, F. P., Dimitrova, K., Edrev, Z. H., Engeler, C., Fouche, F. J., Garcia-Orellana, J., Gasco, C., Gastaud, J., Gudelis, A., Hancock, G., Holm, E., Legarda, F., Ikaheimonen, T. K., Ilchmann, C., Jenkinson, A. V., Kanisch, G., Kis-Benedek, G., Kleinschmidt, R., Koukouliou, V., Kuhar, B., LaRosa, J., Lee, S.-H., LePetit, G., Levy-Palomo, I., Liong Wee Kwong, L., Llaurado, M., Maringer, F. J., Meyer, M., Michalik, B., Michel, H., Nies, H., Nour, S., Oh, J.-S., Oregioni, B., Palomares, J., Pantelic, G., Pfitzner, J., Pilvio, R., Puskeiler, L., Satake, H., Schikowski, J., Vitorovic, G., Woodhead, D., & Wyse, E. (2008). A new Certified Reference Material for radionuclides in Irish Sea sediment (IAEA-385). Appl. Radiat. Isot., 66(11), 1711–1717.10.1016/j.apradiso.2007.10.02018513984Search in Google Scholar

16. Shakhashiro, A., Gondin da Fonseca Azeredo, A. M., Sansone, U., & Fajgelj, A. (2007). Matrix materials for proficiency testing: optimization of a procedure for spiking soil with gamma-emitting radionuclides. Anal. Bioanal. Chem., 387(7), 2509–2515.10.1007/s00216-006-0772-z17053921Search in Google Scholar

17. Canberra Industries. (2013). Model S574 LabSOCS calibration software. Meriden CT, USA: Canberra Industries Inc. Available from http://www.canberra.com/products/insitu_systems/pdf/ISOCS-SSC40166.pdf.Search in Google Scholar

eISSN:
0029-5922
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other