Open Access

Influence of natural radium contamination of barium chloride on the determination of radium isotopes in the water samples using α/β liquid scintillation spectrometry


Cite

1. Nguyen, D. C., Duliński, M., Jodłowski, P., Nowak, J., Różański, K., Śleziak, M., & Wachniew, P. (2011). Natural radioactivity in groundwater - a review. Isot. Environ. Health Stud., 47(4), 415-437.10.1080/10256016.2011.62812322166151Search in Google Scholar

2. Pietrzak-Flis, Z., Rosiak, L., Suplinska, M., Chrzanowski, E., & Dembinska, S. (2001). Daily intake of 238U, 232Th, 230Th, 228Th and 226Ra in food and drinking water by inhabitants of the Wałbrzych region. J. Radioanal. Nucl. Chem., 273(1), 163-169.Search in Google Scholar

3. Rosa, M. L., Taddei, M. T., Cheberle, L. V., Ferreira, M. T., Santos, S. C., Avegliano, R. P., Bergamini, G., & Maihara, V. A. (2015). Determination of 234U, 235U, 238U, 232Th, 230Th, 228Th, 226Ra, 228Ra and 210Pb in food from Brazilian total diet. J. Radioanal. Nucl. Chem., 306(3), 695-700.10.1007/s10967-015-4262-7Search in Google Scholar

4. Smodis, B., Cerne, M., Jacimovic, R., & Benedik, L. (2015). Transfer of uranium and radium to Chinese cabbage from soil containing elevated levels of natural radionuclides. J. Radioanal. Nucl. Chem., 306(3), 685-694.10.1007/s10967-015-4198-ySearch in Google Scholar

5. Starościak, E., & Rosiak, L. (2015). Determination of uranium levels in the urine of Warsaw residents (Poland). J. Radioanal. Nucl. Chem., 304(1), 75-79.10.1007/s10967-014-3787-5451401026224984Search in Google Scholar

6. Struminska-Parulska, D. I., Szymańska, K., & Skwarzec, B. (2015). Determination of 210Po in hair of domestic animals from Poland and Norway. J. Radioanal. Nucl. Chem., 306(1), 71-78.10.1007/s10967-015-4062-0Search in Google Scholar

7. Bode, K. T., Bylyku, E., Xhixha, G., Daci, B., & Fishka, K. (2015). Determination of activity concentration of 210Po in mussels (Mytilus galloprovincialis) from Butrinti Lagoon, Albanian Ionian coast. J. Radioanal. Nucl. Chem., 304(3), 1353-1358.10.1007/s10967-015-4005-9Search in Google Scholar

8. Basyigit, B., & Tekin-Ozan, S. (2013). Concentrations of some heavy metals in water, sediment and tissues of pikeperch (Sander Lucioperca) from Karatas lake related to physico-chemical parameters, fi sh size and seasons. Pol. J. Environ. Stud., 22(3), 633-644.Search in Google Scholar

9. Poggi, C. M., de Farias, E. E., Silveira, P. B., Filho, C. A., de Franca, E. J., Gazineu, M. H., & Hazin, C. A. (2015). 226Ra, 228Ra and 40K in scales from boilers of industrial installations. J. Radioanal. Nucl. Chem., 306(3), 667-672.10.1007/s10967-015-4318-8Search in Google Scholar

10. Milvy, P., & Cothern, R. (1990). Scientifi c background for the development of regulations for radionuclides in drinking water. In R. Cothern, & P. Rebers (Eds.), Radon, radium and uranium in drinking water (pp. 1-15). Chelsea: Lewis Publishers.Search in Google Scholar

11. UNCEAR. (2000). Sources and effects of atomic ionizing radiation. New York: United Nations.Search in Google Scholar

12. Jodlowski, P., & Kalita, S. (2010). Gamma-Ray Spectrometry Laboratory for high-precision measurements of radionuclide concentrations in environmental samples. Nukleonika, 55(2), 143-148.Search in Google Scholar

13. Benes, P. (1990). Radium in (continental) surface water. In The environmental behavior of radium (pp. 373-418). Vienna: IAEA.Search in Google Scholar

14. Kozłowska, B., Walencik, A., Dorda, J., & Przylibski, T. A. (2007). Uranium, radium and 40K isotopes in bottled mineral waters from Outer Carpathians, Poland. Radiat. Meas., 42(8), 1380-1386.10.1016/j.radmeas.2007.03.004Search in Google Scholar

15. Vesterbacka, P., Turtianen, T., Heinavaara, S., & Arvela, H. (2006). Activity concentrations of 226Ra and 228Ra in drilled well water in Finland. Radiat. Protect. Dosim., 121(4), 406-421.10.1093/rpd/ncl06716777909Search in Google Scholar

16. Vandenhove, H., Verrezen, F., Landa, E. R., & Atwood, E. A. (2010). Radium. Chichester, UK: Wiley.Search in Google Scholar

17. Nguyen, D. C. (2010). Promieniotwórczość naturalna wybranych wód mineralnych Karpat polskich. Kraków: JAK.Search in Google Scholar

18. Szabo, Z., DePaul, V. T., Fischer, J. M., Kraemer, T. F., & Jacobsen, E. (2012). Occurrence and geochemistry of radium in water from principal drinking-water aquifer systems of the United States. Appl. Geochem., 27, 729-752.10.1016/j.apgeochem.2011.11.002Search in Google Scholar

19. World Health Organization. (2008). Drinking water directions, radiological aspects. Geneva: WHO.Search in Google Scholar

20. Council of the European Union. (2013). Council Directive 2013/51/EURATOM of 22 October 2013 laying down requirements for the protection of the health of the general public with regard to radioactive substances in water intended for human consumption. Brussels: O. J. EU.Search in Google Scholar

21. Radenković, M. B., Joksić, J. D., & Kovacević, J. (2015). Natural radionuclides content and radioactive series disequilibrium in drinking waters from Balkans region. J. Radioanal. Nucl. Chem., 306, 295-299.10.1007/s10967-014-3858-7Search in Google Scholar

22. Saito, T., Ohta, T., Koike, Y., & Sato, J. (2002). A new analytical approach for 226Ra and 228Ra in environmental waters. J. Radioanal. Nucl. Chem., 255, 535-538.10.1023/A:1022540617716Search in Google Scholar

23. Currie, L. A. (2008). Detection and qualification capabilities in nuclear analytical measurements. In P. Poviniec (Ed.), Analysis of environmental radionuclides. Amsterdam, Boston: Elsevier. Search in Google Scholar

eISSN:
0029-5922
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other