1. bookVolume 61 (2016): Issue 3 (September 2016)
Journal Details
License
Format
Journal
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Copyright
© 2020 Sciendo

The influence of air conditioning changes on the effective dose due to radon and its short-lived decay products

Published Online: 10 Sep 2016
Page range: 239 - 244
Received: 19 Jan 2016
Accepted: 23 Mar 2016
Journal Details
License
Format
Journal
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Copyright
© 2020 Sciendo

Most people spend the majority of their time in indoor environments where the level of harmful pollutants is often significantly higher than outdoors. Radon (222Rn) and its decay products are the example of radioactive pollutants. These radioisotopes are the main source of ionizing radiation in non-industrial buildings. The aim of the study was to determine the impact of air-conditioning system on radon and its progeny concentrations and thus on the effective dose. The measurements were carried out in the auditorium at the Environmental Engineering Faculty (Lublin University of Technology, Poland). Measurements of radon and its progeny (in attached and unattached fractions) as well as measurements of the following indoor air parameters were performed in two air-conditioning (AC) operation modes: AC ON and AC ON/OFF. The air supply rate and air recirculation were taken into consideration. The separation of radon progeny into attached and unattached fractions allowed for determining, respectively, the dose conversion factor (DCF) and the inhalation dose for teachers and students in the auditorium. A considerable increase of the mean radon progeny concentrations from 1.2 Bq/m3 to 5.0 Bq/m3 was observed in the AC ON/OFF mode compared to the AC ON mode. This also resulted in the increase of the inhalation dose from 0.005 mSv/y to 0.016 mSv/y (for 200 h/year). Furthermore, the change of the air recirculation rate from 0% to 80% resulted in a decrease of the mean radon concentration from 30 Bq/m3 to 12 Bq/m3 and the reduction of the mean radon progeny concentration from 1.4 Bq/m3 to 0.8 Bq/m3. This resulted in the reduction of the inhalation dose from 0.006 mSv/y to 0.003 mSv/y.

Keywords

National Atomic Energy Agency. (2015). Annual report on the activities of the President of the National Atomic Energy Agency and assessment of nuclear safety and radiological protection in Poland in 2014. Warszawa: Państwowa Agencja Atomistyki (in Polish).National Atomic Energy Agency2015Annual report on the activities of the President of the National Atomic Energy Agency and assessment of nuclear safety and radiological protection in Poland in 2014WarszawaPaństwowa Agencja Atomistyki(in Polish)Search in Google Scholar

Kozak, K., Mazur, J., Kozlowska, B., Karpińska, M., Przylibski, T. A., Mamont-Cieśla, K., Grządziel, D., Stawarz, O., Wysocka, M., Dorda, J., Żebrowski, A., Olszewski, J., Hovhannisyan, H., Dohojda, M., Kapała, J., Chmielewska, I., Kłos, B., Jankowski, J., Mnich, S., & Kołodziej, R. (2011). Correction factors for determination of annual average radon concentration in dwellings of Poland resulting from seasonal variability of indoor radon. Appl. Radiat. Isot., 69, 1459–1465.KozakK.MazurJ.KozlowskaB.KarpińskaM.PrzylibskiT. A.Mamont-CieślaK.GrządzielD.StawarzO.WysockaM.DordaJ.ŻebrowskiA.OlszewskiJ.HovhannisyanH.DohojdaM.KapałaJ.ChmielewskaI.KłosB.JankowskiJ.MnichS.KołodziejR.2011Correction factors for determination of annual average radon concentration in dwellings of Poland resulting from seasonal variability of indoor radonAppl. Radiat. Isot.6914591465Search in Google Scholar

Somlai, J., Jobbágy, V., Kovács, J., Németh, Cs., & Kovács, T. (2008). Connection between radon emanation and some structural properties of coal-slag as building material. Radiat. Meas., 43(1), 72–76.SomlaiJ.JobbágyV.KovácsJ.NémethCs.KovácsT.2008Connection between radon emanation and some structural properties of coal-slag as building materialRadiat. Meas.4317276Search in Google Scholar

Kovler, K. (2012). Does the utilization of coal fly ash in concrete construction present a radiation hazard? Constr. Build. Mater., 29, 158–166.KovlerK.2012Does the utilization of coal fly ash in concrete construction present a radiation hazard?Constr. Build. Mater.29158166Search in Google Scholar

Połednik, B., Dudzińska, M. R., Kozak, K., Mazur, J., & Gazda, L. (2012). The impact of the indoor air parameters on the dynamics of radon and its decay products concentration changes. In Proceedings of Healthy Building, 8–12 July 2012 (pp. 2B.8). Brisbane, Australia.PołednikB.DudzińskaM. R.KozakK.MazurJ.GazdaL.2012The impact of the indoor air parameters on the dynamics of radon and its decay products concentration changesProceedings of Healthy Building8–12 July 2012(pp. 2B.8)Brisbane, AustraliaSearch in Google Scholar

Kávási, N., Kovács, T., Németh, C., Szabó, T., Gorjánácz, Z., Várhegyi, A., Hakl, J., & Somlai, J. (2006). Difficulties in radon measurements at workplaces. Radiat. Meas., 41, 229–234.KávásiN.KovácsT.NémethC.SzabóT.GorjánáczZ.VárhegyiA.HaklJ.SomlaiJ.2006Difficulties in radon measurements at workplacesRadiat. Meas.41229234Search in Google Scholar

Marley, F., & Phillips, P. S. (2001). Investigation of the potential for radon mitigation by operation of mechanical systems affecting indoor air. J. Environ. Radioact., 54, 205–219.MarleyF.PhillipsP. S.2001Investigation of the potential for radon mitigation by operation of mechanical systems affecting indoor airJ. Environ. Radioact.54205219Search in Google Scholar

Karpińska, M., Mnich, Z., & Kapała, J. (2004). Seasonal changes in radon concentrations in buildings in the region of northeastern Poland. J. Environ. Radioact., 77(2), 101–109.KarpińskaM.MnichZ.KapałaJ.2004Seasonal changes in radon concentrations in buildings in the region of northeastern PolandJ. Environ. Radioact.772101109Search in Google Scholar

Moriizumi, J., Yamada, S., Xu, Y., Matsuki, S., Hirao, S., & Yamazawa, H. (2014). Indoor/outdoor radon decay products associated aerosol particle-size distributions and their relation to total number concentrations. Radiat. Prot. Dosim., 160(1/3), 196–201. 10.1093/rpd/ncu080.MoriizumiJ.YamadaS.XuY.MatsukiS.HiraoS.YamazawaH.2014Indoor/outdoor radon decay products associated aerosol particle-size distributions and their relation to total number concentrationsRadiat. Prot. Dosim.1601/319620110.1093/rpd/ncu080Open DOISearch in Google Scholar

Darby, S., Hill, D., Auvinen, A., Barros-Dios, J. M., Baysson, H., Bochicchio, F., Deo, H., Falk, R., Forastiere, F., Hakama, M., Heid, I., Kreienbrock, L., Kreuzer, M., Lagarde, F., Mäkeläinen, I., Muirhead, C., Oberaigner, W., Pershagen, G., Ruano-Ravina, A., Ruosteenoja, E., Rosario, A. S., Tirmarche, M., Tomásek, L., Whitley, E., Wichmann, H. E., & Doll, R. (2005). Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case-control studies. Br. Med. J., 330, 223–227.DarbyS.HillD.AuvinenA.Barros-DiosJ. M.BayssonH.BochicchioF.DeoH.FalkR.ForastiereF.HakamaM.HeidI.KreienbrockL.KreuzerM.LagardeF.MäkeläinenI.MuirheadC.OberaignerW.PershagenG.Ruano-RavinaA.RuosteenojaE.RosarioA. S.TirmarcheM.TomásekL.WhitleyE.WichmannH. E.DollR.2005Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case-control studiesBr. Med. J.330223227Search in Google Scholar

Ramola, R. C., Negi, M. S., & Choubey, V. M. (2003). Measurement of equilibrium factor “F” between radon and its progeny and thoron and its progeny in the indoor atmosphere using nuclear track detectors. Indoor Built Environ., 12, 351–355.RamolaR. C.NegiM. S.ChoubeyV. M.2003Measurement of equilibrium factor “F” between radon and its progeny and thoron and its progeny in the indoor atmosphere using nuclear track detectorsIndoor Built Environ.12351355Search in Google Scholar

Forkapić, S., Mrđa, D., Vesković, M., Todorović, N., Bikit, K., Nikolov, J., & Hansman, J. (2013). Radon equilibrium measurement in the air. Rom. J. Phys., 58, S140–S147.ForkapićS.MrđaD.VeskovićM.TodorovićN.BikitK.NikolovJ.HansmanJ.2013Radon equilibrium measurement in the airRom. J. Phys.58S140S147Search in Google Scholar

UNSCEAR. (2000). United Nations Scientific Committee on the Effect of Atomic Radiation exposures from natural radiation sources. Report to General Assembly. Annex B. New York: UN.UNSCEAR2000United Nations Scientific Committee on the Effect of Atomic Radiation exposures from natural radiation sources. Report to General Assembly. Annex BNew YorkUNSearch in Google Scholar

Kozak, K., Grządziel, D., Połednik, B., Mazur, J., Dudzińska, M. R., & Mroczek, M. (2014). Air conditioning impact on the dynamics of radon and its daughters concentration. Radiat. Prot. Dosim., 162(4), 663–673.KozakK.GrządzielD.PołednikB.MazurJ.DudzińskaM. R.MroczekM.2014Air conditioning impact on the dynamics of radon and its daughters concentrationRadiat. Prot. Dosim.1624663673Search in Google Scholar

Nero Jr, A. V. (1988). Radon and its decay products in indoor air – an overview. In W. W. Nazarov, & A. V. Nero (Eds.), Radon and its decay products in indoor air (pp. 1–53). New York: Wiley Interscience.NeroA. V.Jr1988Radon and its decay products in indoor air – an overviewNazarovW. W.NeroA. V.Radon and its decay products in indoor air153New YorkWiley InterscienceSearch in Google Scholar

Porstendörfer, J. (1996). Radon: measurements related to dose. Environ. Int., 22(Suppl. 1), S563–S583.PorstendörferJ.1996Radon: measurements related to doseEnviron. Int.22Suppl. 1S563S583Search in Google Scholar

Bennett, W. D., Zeman, K. L., & Jarabek, A. M. (2003). Nasal contribution to breathing with exercise: effect of race and gender. J. Appl. Physiol., 95(2), 497–503.BennettW. D.ZemanK. L.JarabekA. M.2003Nasal contribution to breathing with exercise: effect of race and genderJ. Appl. Physiol.952497503Search in Google Scholar

Plan your remote conference with Sciendo