1. bookVolume 60 (2015): Issue 3 (September 2015)
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Open Access

The dynamics of the surface layer of lipid membranes doped by vanadium complex: computer modeling and EPR studies

Published Online: 06 Aug 2015
Volume & Issue: Volume 60 (2015) - Issue 3 (September 2015)
Page range: 395 - 398
Received: 20 Nov 2014
Accepted: 16 Apr 2015
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Abstract

Penetration of the liposome membranes doped with vanadium complex formed in the liquid-crystalline phase from egg yolk lecithin (EYL) by the TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) spin probes has been investigated. The penetration process was followed by 360 hours at 24°C, using the electron spin resonance (EPR) method. The spectroscopic parameter of the partition (F) of this probe indicated that a maximum rigidity of the membrane was at 3% concentration of the vanadium complex. Computer simulations showed that the increase in the rigidity of the membrane corresponds to the closure of gaps in the surface layer of the membrane, and indicates the essential role of the membrane surface in transport processes.

Keywords

1. Singer, S. J., & Nicolson, G. L. (1972). The fluid mosaic model of the structure of cell membranes are viewed as two-dimensional solutions of oriented globular proteins and lipids. Science, 175, 720–731.10.1126/science.175.4023.720Search in Google Scholar

2. Kuczera, J. (1983). Wpływ amfifilowych detergentów na błony liposomów. Zagadnienia Biofizyki Współczesnej, 8, 53–101.Search in Google Scholar

3. Man, D., Słota, R., Broda, M. A., Mele, G., & Li, J. (2011). Metalloporphyrin intercalation in liposome membranes: ESR study. J. Biol. Inorg. Chem., 16(1), 173–181.10.1007/s00775-010-0715-1Search in Google Scholar

4. Man, D., Olchawa, R., & Kubica, K. (2010). Membrane fluidity and the surface properties of the lipid bilayer: ESR experiment and computer simulation. J. Liposome Res., 20, 211–218.10.3109/08982100903286485Search in Google Scholar

5. Man, D., & Olchawa, R. (2013). Two-step impact of Amphotericin B AmB on biological membranes. ESR experiment and computer simulations. J. Liposome Res., 23, 327–335.10.3109/08982104.2013.814139Search in Google Scholar

6. Stigter, D., Mingins, J., & Dill, K. A. (1992). Phospholipid interactions in model membrane systems. Biophys. J., 61, 1616–1629.10.1016/S0006-3495(92)81965-3Search in Google Scholar

7. Raudino, A., & Mauzerall, D. (1986). Dielectric properties of the polar head group region of zwitterionic lipid bilayers. Biophys. J., 50, 441–443.10.1016/S0006-3495(86)83480-4Search in Google Scholar

8. Metropolis, N., Rosenbluth, A. W., & Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. J. Chem. Phys., 21, 1087–1092.10.1063/1.1699114Search in Google Scholar

9. Shimshick, E. J., & McConnell, H. M. (1973). Lateral phase separation in phospholipid membranes. Biochemistry, 12, 2351–2360.10.1021/bi00736a0264351059Search in Google Scholar

10. Man, D., Podolak, M., & Olchawa, R. (2001). Computer simulation of the electric interactions between the phospholipid head-groups and ionic admixtures in the membrane surface. Z. Naturforsch., 56, c402–c406.10.1515/znc-2001-5-61311421456Search in Google Scholar

11. Man, D. (2008). D Fluidity of liposome membranes doped with organic tin compounds: ESR study. J. Liposome Res., 18, 225–234.10.1080/0898210080230946118770072Search in Google Scholar

12. Podolak, M., & Man, D. (2002). Electric interactions at the lipid membrane surface. Cell. Mol. Biol. Lett., 7, 961–969.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo